Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:26:05.332Z Has data issue: false hasContentIssue false

Effectiveness of a Robot-Mediated Strategy While Counteracting Multidirectional Slippages

Published online by Cambridge University Press:  14 June 2019

F. Aprigliano
Affiliation:
The BioRobotics Institute, ScuolaSuperioreSant’Anna, Pisa, Italy. E-mails: [email protected]; [email protected]
V. Monaco*
Affiliation:
The BioRobotics Institute, ScuolaSuperioreSant’Anna, Pisa, Italy. E-mails: [email protected]; [email protected] IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy. E-mail: [email protected]
P. Tropea
Affiliation:
Department of Neurorehabilitation Sciences, Casa CuraPoliclinico, Milan, Italy. E-mail: p.tropea@ccppdezza@it
D. Martelli
Affiliation:
Department of Mechanical Engineering, Columbia University, New York, NY, USA. E-mail: [email protected]
N. Vitiello
Affiliation:
The BioRobotics Institute, ScuolaSuperioreSant’Anna, Pisa, Italy. E-mails: [email protected]; [email protected] IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy. E-mail: [email protected]
S. Micera
Affiliation:
The BioRobotics Institute, ScuolaSuperioreSant’Anna, Pisa, Italy. E-mails: [email protected]; [email protected] Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland. E-mail: [email protected]
*
*Corresponding author. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study investigates the effectiveness of a robot-mediated strategy aimed at promoting balance recovery after multidirectional slippages. Six older adults were asked to manage anteroposterior and mediolateral slippages while donning an active pelvis orthosis (APO). The APO was set up either to assist volunteers during balance loss or to be transparent. The margin of stability, in sagittal and frontal planes, was the main metric to assess the effectiveness of balance recovery. Results showed that the assistive strategy is effective at promoting balance recovery in the sagittal plane, for both perturbing paradigms; however, it is not effective at controlling stability in the frontal plane.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© Cambridge University Press 2019

Footnotes

Equally contributed and alphabetic order.

References

Masud, T. and Morris, R. O., “Epidemiology of falls,Age Ageing. 30, 37 (2001). doi: 10.1093/ageing/30.1.3.CrossRefGoogle Scholar
Rubenstein, L. Z., “Falls in older people: Epidemiology, risk factors and strategies for prevention,Age Ageing. 35(Suppl 2), ii37ii41 (2006). doi: 10.1093/ageing/afl084.CrossRefGoogle Scholar
Ambrose, A. F., Paul, G. and Hausdorff, J. M., “Risk factors for falls among older adults: A review of the literature,Maturitas. 75, 5161 (2013). doi: 10.1016/j.maturitas.2013.02.009.CrossRefGoogle Scholar
Laird, R. D., Studenski, S., Perera, S. and Wallace, D., “Fall history is an independent predictor of adverse health outcomes and utilization in the elderly,Am. J. Manag. Care. 7, 11331138 (2001).Google Scholar
Yardley, L. and Smith, H., “A prospective study of the relationship between feared consequences of falling and avoidance of activity in community-living older people,Gerontologist 42, 1723 (2002). doi: 10.1093/geront/42.1.17.CrossRefGoogle Scholar
Rajagopalan, R., Litvan, I. and Jung, T.-P., “Fall prediction and prevention systems: Recent trends, challenges, and future research directions,Sensors 17, 2509 (2017). doi: 10.3390/s17112509.CrossRefGoogle Scholar
Grabiner, M. D., Lou Bareither, M., Gatts, S., Marone, J. and Troy, K. L., “Task-specific training reduces trip-related fall risk in women,Med. Sci. Sports. Exerc. 44, 24102414 (2012). doi: 10.1249/MSS.0b013e318268c89f.CrossRefGoogle Scholar
Hauer, K., Becker, C., Lindemann, U. and Beyer, N., “Effectiveness of physical training on motor performance and fall prevention in cognitively impaired older persons: A systematic review,Am. J. Phys. Med. Rehabil. 85, 847–57 (2006). doi: 10.1097/01.phm.0000228539.99682.32.CrossRefGoogle Scholar
Perula, L. A., Varas-Fabra, F., Rodriguez, V., Ruiz-Moral, R., Fernandez, J. A., Gonzalez, J., Perula, C. J., Roldan, A.M., de Dios, C. and Group, E. S. C., “Effectiveness of a multifactorial intervention program to reduce falls incidence among community-living older adults: A randomized controlled trial,Arch. Phys. Med. Rehabil. 93, 16771684 (2012). doi: 10.1016/j.apmr.2012.03.035.CrossRefGoogle Scholar
Monaco, V., Tropea, P., Aprigliano, F., Martelli, D., Parri, A., Cortese, M., Molino-Lova, R., Vitiello, N. and Micera, S., “An ecologically-controlled exoskeleton can improve balance recovery after slippage,Sci. Rep. 7, 46721 (2017). doi: 10.1038/srep46721.CrossRefGoogle Scholar
Kuo, A. D., “Stabilization of lateral motion in passive dynamic walking,Int. J. Rob. Res. 18, 917930 (1999). doi: 10.1177/02783649922066655.CrossRefGoogle Scholar
Martelli, D., Monaco, V., Bassi Luciani, L. and Micera, S., “Angular momentum during unexpected multidirectional perturbations delivered while walking,IEEE Trans. Biomed. Eng. 60(7), 17851795 (2013). doi: 10.1109/TBME.2013.2241434.CrossRefGoogle Scholar
Bassi Luciani, L., Genovese, V., Monaco, V., Odetti, L., Cattin, E. and Micera, S., “Design and Evaluation of a new mechatronic platform for assessment and prevention of fall risks,J. Neuroeng. Rehabil. 9, 51 (2012). doi: 10.1186/1743-0003-9-51.CrossRefGoogle Scholar
Aprigliano, F., Martelli, D., Micera, S. and Monaco, V., “Intersegmental coordination elicited by unexpected multidirectional slipping-like perturbations resembles that adopted during steady locomotion,J. Neurophysiol. 115, 728740 (2016). doi: 10.1152/jn.00327.2015.CrossRefGoogle Scholar
Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., Yan, T., Lefeber, D. and Vitiello, N., “A light-weight active orthosis for hip movement assistance,Rob. Auton. Syst. 73, 123134 (2015). doi: 10.1016/j.robot.2014.08.015.CrossRefGoogle Scholar
Martelli, D., Vannetti, F., Cortese, M., Tropea, P., Giovacchini, F., Micera, S., Monaco, V. and Vitiello, N., “The effects on biomechanics of walking and balance recovery in a novel pelvis exoskeleton during zero-torque control,Robotica. 32, 13171330 (2014). doi: 10.1017/S0263574714001568.CrossRefGoogle Scholar
Tropea, P., Vitiello, N., Martelli, D., Aprigliano, F., Micera, S. and Monaco, V., “Detecting slipping-like perturbations by using adaptive oscillators,Ann. Biomed. Eng. 43, 416426 (2015). doi: 10.1007/s10439-014-1175-5.CrossRefGoogle Scholar
Aprigliano, F., Monaco, V., Tropea, P., Martelli, D., Vitiello, N. and Micera, S., “Effectiveness of Assistive Torque Patterns Supplied by a Pelvis Exoskeleton After Slippages: A Pilot Study.Proceedings of the 4th International Conference on NeuroRehabilitation (ICNR2018), October 16–20, 2018, Pisa, Italy (2019) pp. 273277. doi: 10.1007/978-3-030-01845-0_55.Google Scholar
Bell, A. L., Pedersen, D. R. and Brand, R. A., “A comparison of the accuracy of several hip center location prediction methods,J. Biomech. 23, 617621 (1990). doi: 10.1016/0021-9290(90)90054-7.CrossRefGoogle Scholar
Davis, R. B., Õunpuu, S., Tyburski, D. and Gage, J. R., “A gait analysis data collection and reduction technique,Hum. Mov. Sci. 10, 575587 (1991). doi: 10.1016/0167-9457(91)90046-Z.CrossRefGoogle Scholar
Winter, D. A., “Biomechanics and motor control of human Gait,Biomech. Mot. Control Hum. Gait Norm. Elder. Pathol. 2, 143 (1991).Google Scholar
Yang, F. and Pai, Y. C., “Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults?,J. Biomech. 47, 38073812 (2014). doi: 10.1016/j.jbiomech.2014.10.027.CrossRefGoogle Scholar
Monaco, V. and Micera, S., “Age-related neuromuscular adaptation does not affect the mechanical efficiency of lower limbs during walking,Gait Posture. 36, 350355 (2012). doi: 10.1016/j.gaitpost.2012.03.031.CrossRefGoogle ScholarPubMed
Quagliarella, L., Sasanelli, N. and Monaco, V., “Drift in posturography systems equipped with a piezoelectric force platform: Analysis and numerical compensation,IEEE Trans. Instrum. Meas. 57, 9971004 (2008). doi: 10.1109/TIM.2007.913833.CrossRefGoogle Scholar
Hof, A. L., Gazendam, M. G. J. and Sinke, W. E., “The condition for dynamic stability,J. Biomech. 38, 18 (2005). doi: 10.1016/j.jbiomech.2004.03.025.CrossRefGoogle Scholar
Hof, A. L., “The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking,Hum. Mov. Sci. 27, 112125 (2008). doi: 10.1016/j.humov.2007.08.003.CrossRefGoogle Scholar
Aprigliano, F., Martelli, D., Tropea, P., Pasquini, G., Micera, S. and Monaco, V., “Aging does not affect the intralimb coordination elicited by slip-like perturbation of different intensities,J. Neurophysiol. 118(3), 17391748 (2017). doi: 10.1152/jn.00844.2016.CrossRefGoogle ScholarPubMed
Lockhart, T. E., Woldstad, J. C. and Smith, J. L., “Effects of age-related gait changes on the biomechanics of slips and falls,Ergonomics. 46, 11361160 (2003). doi: 10.1080/0014013031000139491.CrossRefGoogle Scholar
Martelli, D., Aprigliano, F., Tropea, P., Pasquini, G., Micera, S. and Monaco, V., “Stability against backward balance loss: Age-related modifications following slip-like perturbations of multiple amplitudes,Gait Posture. 53, 207214 (2017). doi: 10.1016/j.gaitpost.2017.02.002.CrossRefGoogle Scholar
Cham, R. and Redfern, M. S., “Lower extremity corrective reactions to slip events,J. Biomech. 34, 14391445 (2001). doi: 10.1016/S0021-9290(01)00116-6.CrossRefGoogle Scholar
Redfern, M. S., Cham, R., Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., Marpet, M., Pai, C. Y. C. and Powers, C., “Biomechanics of slips,Ergonomics. 44(13), 11381166 (2001). doi: 10.1080/00140130110085547.CrossRefGoogle Scholar
Aprigliano, F., Martelli, D., Tropea, P., Micera, S. and Monaco, V., “Effects of slipping-like perturbation intensity on the dynamical stability,Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 52955298 (2015). doi: 10.1109/EMBC.2015.7319586.Google Scholar
Ferber, R., Osternig, L. R., Woollacott, M. H., Wasielewski, N. J. and Lee, J. H., “Reactive balance adjustments to unexpected perturbations during human walking,Gait Posture. 16, 238248 (2002). doi: 10.1016/S0966-6362(02)00010-3.CrossRefGoogle Scholar
Tropea, P., Martelli, D., Aprigliano, F., Micera, S. and Monaco, V., “Effects of aging and perturbation intensities on temporal parameters during slipping-like perturbations,Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 52915294 (2015). doi: 10.1109/EMBC.2015.7319585.Google Scholar
Winter, D. A., “Human balance and posture control during standing and walking,Gait Posture. 3, 193214 (1995). doi: 10.1016/0966-6362(96)82849-9.CrossRefGoogle Scholar
Inacio, M., Ryan, A. S., Bair, W. N., Prettyman, M., Beamer, B. A. and Rogers, M. W., “Gluteal muscle composition differentiates fallers from non-fallers in community dwelling older adults,BMC Geriatrics. 14, 37 (2014). doi: 10.1186/1471-2318-14-37.CrossRefGoogle Scholar
Mille, M. L., Johnson, M. E., Martinez, K. M. and Rogers, M. W., “Age-dependent differences in lateral balance recovery through protective stepping,Clin. Biomech. 20, 607616 (2005). doi: 10.1016/j.clinbiomech.2005.03.004.CrossRefGoogle Scholar
Dipietro, L., “Physical activity in aging: Changes in patterns and their relationship to health and function,J. Gerontol. A. Biol. Sci. Med. Sci. 56, 1322 (2001). doi: 10.1093/gerona/56.suppl_2.13.CrossRefGoogle Scholar
Gottschall, J. S., Okita, N. and Sheehan, R. C., “Muscle activity patterns of the tensor fascia latae and adductor longus for ramp and stair walking,J. Electromyogr. Kinesiol. 22, 6773 (2012). doi: 10.1016/j.jelekin.2011.10.003.CrossRefGoogle Scholar
Rogers, M. W. and Mille, M.-L., “Lateral stability and falls in older people,Exerc. Sport Sci. Rev. 31, 182187 (2003). doi: 10.1097/00003677-200310000-00005.CrossRefGoogle Scholar
Zhang, T., Tran, M. and Huang, H., “Design and experimental verification of hip exoskeleton with balance capacities for walking assistance,IEEE ASME Trans. Mechatron. 23, 274285 (2018). doi: 10.1109/TMECH.2018.2790358.CrossRefGoogle Scholar