Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T04:48:06.938Z Has data issue: false hasContentIssue false

Development of a novel body weight support system for gait rehabilitation

Published online by Cambridge University Press:  07 December 2022

Lucas A. O. Rodrigues
Affiliation:
Federal University of Uberlandia, Uberlandia, MG, Brazil
Rogério S. Gonçalves*
Affiliation:
Federal University of Uberlandia, Uberlandia, MG, Brazil
*
*Corresponding author. E-mail: [email protected]

Abstract

Modern rehabilitation processes for neurological patients have been widely assisted by robotic structures, with continuous research and improvements. The use of robotic assistance in rehabilitation is a consolidated technique for upper limb training sessions. However, human gait robotic rehabilitation still needs further research and development. Based on that, this paper deals with the development of a novel active body weight support (BWS) system integrated with a serious game for poststroke patients. This paper starts with a brief review of the state of the art of applied technologies for gait rehabilitation. Next, it presents the obtained mathematical model followed by multibody synthesis techniques and meta-heuristic optimization to the proposed device. The control of the structure is designed using proportional integral derivative (PID) controllers tuned with meta-heuristic optimization and associated with a suppression function to perform assist-as-needed actions. Then, the prototype is integrated with a serious game designed specifically for this application. Finally, a pilot study is conducted with the structure and healthy volunteers. The results obtained show that the mobility of the novel BWS is as expected and the proposed system potentially offers a novel tool for gait training.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Virani, S. S., Alonso, A., Aparicio, H. J., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., Carson, A. P., Chamberlain, A. M., Cheng, S., Delling, F. N., Elkind, M. S. V., Evenson, K. R., Ferguson, J. F., Gupta, D. K., Khan, S. S., Kissela, B. M., Knutson, K. L., Lee, C. D., Lewis, T. T., Liu, J., Loop, M. S., Lutsey, P. L., Ma, J., Mackey, J., Martin, S. S., Matchar, D. B., Mussolino, M. E., Navaneethan, S. D., Perak, A. M., Roth, G. A., Samad, Z., Satou, G. M., Schroeder, E. B., Shah, S. H., Shay, C. M., Stokes, A., VanWagner, L. B., Wang, N-Y. and Tsao, C. W., “Heart disease and stroke statistics – 2021 update,” Circulation 143(8), e254–e743 (2021). doi: 10.1161/CIR.0000000000000950.CrossRefGoogle ScholarPubMed
Salvadori, E., G. Papi, G. Insalata, V. Rinnoci, I. Donnini, M. Martini, C. Falsini, B. Hakiki, A. Romoli, C. Barbato, P. Polcaro, F. Casamorata, C. Macchi, F. Cecchi and A. Poggesi, “Comparison between ischemic and hemorrhagic strokes in functional outcome at discharge from an intensive rehabilitation hospital,” Diagnostics 11(1), 38 (2021). doi: 10.3390/diagnostics11010038.CrossRefGoogle Scholar
Felgin, V. L., Norrving, B. and Mensah, G. A., “Global burden of stroke,” Circ Res V. 120(3), 439448 (2017). doi: 10.1161/CIRCRESAHA.116.308413.Google Scholar
Gonçalves, R. S. and Rodrigues, L. A. O., “Development of nonmotorized mechanisms for lower limb rehabilitation,” Robotica 40(1), 118 (2021). doi: 10.1017/S0263574721000412.Google Scholar
Lobo, P.G.G.A., V. B. Zanon, D. Lara, V. B. Freire, C. A. Nozawa, J. V. B. Andrade, W. C. Barros and I. G. A. Lobo, “Epidemiology of the ischemic cerebrovascular accident in Brazil in the year of 2019, an analysis from an age group perspective,” Braz. J. Health Rev. 4(1), 34983505 (2021).CrossRefGoogle Scholar
Frenkel-Toledo, S., S. Ofir-Geva, L. Mansano, O. Granot and N. Soroker, “Stroke lesion impact on lower limb fuction,” Front. Hum. Neurosci. 15, 1–11 (2021). doi: 10.3389/fnhum.2021.592975.CrossRefGoogle Scholar
Paolucci, S., Iosa, M., Coiro, P., Venturiero, V., Savo, A., De Angelis, D. and Morone, G., “Post-stroke depression increases disability more than 15% in ischemic stroke survivors: A case-control study,” Front. Neurol. 10, 926 (2019). doi: 10.3389/fneur.2019.00926.CrossRefGoogle Scholar
Alves, T., Gonçalves, R. S. and Carbone, G., “Serious games strategies with cable-driven robots for bimanual rehabilitation: A randomized controlled trial with Post-Stroke patients,” Front. Robot. AI 9, 739088 (2022). doi: 10.3389/frobt.2022.739088.CrossRefGoogle ScholarPubMed
Barbosa, A. M., Carvalho, J. C. M. and Gonçalves, R. S., “Cable-driven lower limb rehabilitation robot,” J. Braz. Soc. Mech. Sci. 40, 245 (2018).CrossRefGoogle Scholar
Hobbs, B. and Artemiadis, P., “A review of robot-assisted lower-limb stroke therapy: Unexplored paths and future directions in gait rehabilitation,” Front. Neurorobot. 14, 19 (2020). doi: 10.3389/fnbot.2020.00019.CrossRefGoogle ScholarPubMed
Domínguez-Téllez, P., J. A. Moral-Muñoz, A. Salazar, E. Casado-Fernández and D. Lucena-Antón, “Game-Based virtual reality interventions to improve upper limb motor function and quality of life after stroke: Systematic review and meta-analysis,” Games Health J. 9(1, suppl 3), 110 (2020).CrossRefGoogle ScholarPubMed
Kooij, H., “Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,” IEEE Trans. Neur. Syst. Rehabil. 15(1), 379386 (2007). doi: 10.1109/TNSRE.2007.903919.Google Scholar
M. Roberts, A robot for gait rehabilitation, Thesis, MIT, 2004, Retrieved from http://dspace.mit.edu/handle/1721.1/34562.Google Scholar
Pietrusinski, M., Cajigas, I., Mizikacioglu, Y., Goldsmith, M., Bonato, P. and Mavroidis, C., “Gait Rehabilitation Therapy using Robot Generated Force Fields Applied at the Pelvis,” In: 2010 IEEE Haptics Symposium, HAPTICS (2010) pp. 401–407. doi: 10.1109/HAPTIC.2010.5444624.CrossRefGoogle Scholar
Aoyagi, D., Ichinose, W. E., Reinkensmeyer, D. J. and Bobrow, J., “Human Step Rehabilitation Using a Robot Attached To the Pelvis, 2004,” In: ASME International Mechanical Engineering Congress and Exposition, (2004) p.7.Google Scholar
Aurich-Schuler, T., Gut, A. and Labruyère, R., “The FreeD module for the lokomat facilitates a physiological movement pattern in healthy people – a proof of concept study,” J. NeuroEng. Rehabil. 16(1), 26 (2019). doi: 10.1186/s12984-019-0496-x.CrossRefGoogle ScholarPubMed
MacLean, M. K. and Ferris, D. P., “Design and validation of a low-cost bodyweight support system for overground walking,” ASME. J. Med. Dev. 14(4), 045001 (2020). doi: 10.1115/1.4047996.Google Scholar
Swinnen, E., J. P. Baeyens, K. Knaepen, M. Michielsen, R. Clijsen, D. Beckwée and E. Kerckhofs, “Robot-assisted walking with the Lokomat: The influence of different levels of guidance force on thorax and pelvis kinematics,” Clin. Biomech. 30(3), 254259 (2015).CrossRefGoogle ScholarPubMed
Hesse, S., H. Schmidt, C. Werner and A. Bardeleben, “Upper and Lower Extremity Robotic Devices for Rehabilitation and for Studying Motor Control,” In: Current Opinion in Neurology (Lippincott Williams Wilkins, 2003).Google Scholar
Liang, B. W., W. H. Wu, O. G. Meijer, J. H. Lin, G. R. Lv, X. C. Lin, M. R. Prins, H. Hu, J. H. van Dieen and S. M. Bruijn, “Pelvic step: The contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill,” Gait Posture 39(1), 105110 (2014).CrossRefGoogle ScholarPubMed
I., A. Kapandji, The Physiology of The Joints, vol. 3 (Churchill Livingstone, London, 1974).Google Scholar
Lewis, C. L., Laudicina, N. M., Khuu, A. and Loverro, K. L., “The human pelvis: Variation in structure and function during gait,” Anat. Rec. (Hoboken), 300(4), 633642 (2017). doi: 10.1002/ar.23552.PMID: 28297184; PMCID: PMC5545133.CrossRefGoogle ScholarPubMed
Ohnuma, T., Lee, G. and N.Y. Chong, “Development of JARoW-II active robotic walker reflecting pelvic movements while walking,” Intel. Serv. Robot. 10(2), 95107 (2017). doi: 10.1007/s11370-016-0212-7.CrossRefGoogle Scholar
Veneman, J. F., J. Menger, E. H. F. van Asseldonk, F. C. T. van der Helm and H. van der Kooji, “Fixating the pelvis in the horizontal plane affects gait characteristics,” Gait Posture 28(1), 157163 (2008).CrossRefGoogle ScholarPubMed
Gosselin, C., Laliberté, T. and Veillette, A., “Singularity-Free kinematically redundant planar parallel mechanisms with unlimited rotational capability,” IEEE Trans. Robot. 31(2), 457467 (2015).CrossRefGoogle Scholar
C. M. Gosselin, M. T. Masouleh, V. Duchaine, P.-L. Richard, S. Foucault and X. Kong, “Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking,” In: Proceedings 2007 IEEE International Conference on Robotics and Automation (2007), pp. 555–560. doi: 10.1109/ROBOT.2007.363045.CrossRefGoogle Scholar
Selig, J. M., Geometrical Foundations of Robotics (World Scientific, 2000). 152 p. ISBN-10: 9810241135. doi: 10.1142/4257 CrossRefGoogle Scholar
Gonçalves, R. S. and Krebs, H. I., “MIT-Skywalker: Considerations on the design of a body weight support system,” J. Neuroeng. Rehabil. 14, 88, 11 pages (2017) doi: 10.1186/s12984-017-0302-6.CrossRefGoogle ScholarPubMed
Uicker, J. J., Pennock, G. R., Shigley, J. E. and McCarthy, J. M., “ Theory of Machines and Mechanisms,” In: Journal of Mechanical Design (Oxford Press, 2003).Google Scholar
R.Haghjoo, M., Lee, H., Afzal, M. R., Eizad, A. and Yoon, J., “Mech-walker: A novel single-DOF linkage device with movable frame for gait rehabilitation,” IEEE/ASME Trans. Mechatron. 26(1), 13–23 (2021) doi: 10.1109/TMECH.2020.2993799.CrossRefGoogle Scholar
Goncalves, R. S., Hamilton, T., Ali, A. D., , H.Hiroaki and Krebs, H. I., “MIT-Skywalker: Evaluating Comfort of Bicycle/Saddle Seat,” In: 2017 International Conference on Rehabilitation Robotics (ICORR) (2017), pp. 516–520. doi: 10.1109/ICORR.2017.8009300.CrossRefGoogle Scholar
Fadali, M. and Visioli, A., Digital Control Engineering: Analysis and Design (Elsevier Science, 2009).CrossRefGoogle Scholar
Gonçalves, R. S., Carvalho, J. C. M. and Lobato, F. S., “Design of a robotic device actuated by cables for human lower limb rehabilitation using self-adaptive differential evolution and robust optimization,” Biosci. J., 16891702 (2016). doi: 10.14393/BJ-v32n1a2016-32436.CrossRefGoogle Scholar
Asl, H. J., Narikiyo, T. and Kawanishi, M., “An assist-as-needed control scheme for robot-assisted rehabilitation,” 2017 American Control Conference (ACC), 2017, pp. 198–203, doi: 10.23919/ACC.2017.7962953.CrossRefGoogle Scholar
Rodrigues, L. A. O., Gaspar, L. A. and Gonçalves, R. S., “Serious Games Integrated With Rehabilitation Structures and Assist-as-Need Techniques,” In: Handbook of Research on Promoting Economic and Social Development Through Serious Games, (Bernardes, O. and Amorim, V., eds.), vol. 1, 1st edn. (IGI Global, 2022) pp. 1665.Google Scholar
Gonçalves, R. S. and Rodrigues, L. A. O., “Development of a Novel Parallel Structure for Gait Rehabilitation.” In: Advances in Computational Intelligence and Robotics, vol. 1, 1st edn. (IGI Global,2020) pp. 4281.Google Scholar