Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T21:36:05.920Z Has data issue: false hasContentIssue false

Design of an underwater robot manipulator for a telerobotic system

Published online by Cambridge University Press:  27 March 2013

Salvador Cobos-Guzman*
Affiliation:
Machining and Condition Monitoring Research Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Jorge Torres
Affiliation:
French-Mexican Laboratory on Computer Science and Control, LAFMIA UMI CNRS 3175, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360 México D.F., México. E-mails: [email protected], [email protected]
Rogelio Lozano
Affiliation:
French-Mexican Laboratory on Computer Science and Control, LAFMIA UMI CNRS 3175, Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, 07360 México D.F., México. E-mails: [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper describes a telerobotic system used for manipulation tasks in underwater environments. The telerobotic system is composed of a robotic arm of 3 degrees of freedom. This robotic arm has been designed to support corrosion environments such as seawater or freshwater. The prototype is designed to support several types of perturbations such as ocean currents and high pressures. The main objective is to efficiently control a teleoperation task considering common perturbations present in deep water. Finally, this paper presents the design, modelling and experiments of the underwater telerobotic system.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Psarros, D., Papadimitriou, V., Chatzakos, P., Spais, V. and Hrissagis, K., “A service robot for subsea flexible risers,” IEEE Robot. Autom. Mag. 17 (1), 5563 (2010).CrossRefGoogle Scholar
2.Ishitsuka, M. and Ishii, K., “Modularity Development and Control of an Underwater Manipulator for AUV,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA (2007) pp. 36483653.Google Scholar
3.Sagara, S., Tamura, M., Yatoh, T. and Shibuya, K., “Digital RAC for underwater vehicle-manipulator systems considering singular configuration,” Artif. Life Robotics 10 (2), 106111 (2006).CrossRefGoogle Scholar
4.Casalino, G., Angeletti, D., Bozzo, T. and Marani, G., “Dexterous Underwater Object Manipulation Via Multirobot Cooperating Systems,” International Conference on Robotics and Automation, Seoul, Korea (2001) pp. 32203225.Google Scholar
5.Lane, D. M., Davies, J. B. C., Casalino, G., Bartolini, G., Cannata, G., Veruggio, G., Canals, M., Smith, C., O'Brien, D. J., Pickett, M., Robinson, G., Jones, D., Scott, E., Ferrara, A., Angelleti, D., Coccoli, M., Bono, R., Virgili, P., Pallas, R. and Gracia, E., “AMADEUS: Advanced manipulation for deep underwater sampling,” IEEE Robot. Autom. Mag. 4 (4), 3445 (1997).CrossRefGoogle Scholar
6.Antonelli, G., Chiaverini, S. and Sarkar, N., “External force control for underwater vehicle-manipulator systems,” IEEE Trans. Robot. Autom. 17 (6), 931938 (2001).CrossRefGoogle Scholar
7.Dannigan, M. W. and Russell, G. T., “Evaluation and reduction of the dynamic coupling between a manipulator and an underwater vehicle,” IEEE J. Ocean. Eng. 23 (3), 260273 (1998).CrossRefGoogle Scholar
8.McMillan, S., Orin, D. E. and McGhee, R. B., “Efficient dynamic simulation of an underwater vehicle with a robotic manipulator,” IEEE Trans. Syst. Man Cybern. 25 (8), 11941206 (1995).CrossRefGoogle Scholar
9.Antonelli, G. and Chiaverini, S., “Fuzzy redundancy resolution and motion coordination for underwater vehicle-manipulator systems,” IEEE Trans. Fuzzy Syst. 11 (1), 109120 (2003).CrossRefGoogle Scholar
10.Tarn, T. J., Shoults, G. A. and Yang, S. P., “A dynamic model of an underwater vehicle with a robotic manipulator using Kane's method,” Auton. Robots 3 (2), 269283 (1996).CrossRefGoogle Scholar
11.Yuh, J., Choi, S. K., Ikehara, C., Kim, G. H., McMurty, G., Ghasemi-Nejhad, M., Sarkar, N. and Sugihara, K., “Design of a Semi-Autonomous Underwater Vehicle for Intervention Missions (SAUVIM),” Proceedings of the 1998 International Symposium on Underwater Technology, Tokyo, Japan (1998) pp. 6368, 15–17.CrossRefGoogle Scholar
12.Marani, G. and Song, C., “Underwater target localization,” IEEE Robot. Autom. Mag. 17 (1), 6470 (2010).CrossRefGoogle Scholar
13.Denavit, J. and Hartenberg, R. S., “A kinematic notation for lower-pair mechanisms based on matrices,” Trans. ASME J. Appl. Mech. 23, 215221 (1955).CrossRefGoogle Scholar
14.Digi, http://www.digi.com/ (accessed September 22, 2012).Google Scholar
15.Pololu Robotics & Electronics, http://www.pololu.com/ (accessed September 22, 2012).Google Scholar
16.Microsoft, http://www.xbox.com/ (accessed September 22, 2012).Google Scholar
17.Vazel, http://www.vazel.com/ (accessed September 22, 2012).Google Scholar
18.Lévesque, B. and Richard, M. J.. “Dynamical analysis of a manipulator in a fluid environment,” Int. J. Robot. Res. 13 (3), 221231 (1994).CrossRefGoogle Scholar
19.Lee, M. and Choi, H.-S.. “A robust controller for underwater robot manipulators,” IEEE Trans. Neural Netw. 11 (6), 14651470 (2000).Google ScholarPubMed
20.McLain, T. W. and Rock, S. M., “Development and experimental validation of an underwater manipulator hydrodynamic model,” Int. J. Robot. Res. 17 (7), 748759 (1998).CrossRefGoogle Scholar
21.Shi, M., Tao, G., Liu, H. and Downs, J. H., “Adaptive Control of Teleoperation Systems,” Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix Arizona, USA (1999) pp. 791796.Google Scholar
22.Dunnigan, M. W., Lane, D. M., Clegg, A. C. and Edwards, I., “Hybrid position/force control of a hydraulic underwater manipulator,” IEEE Proc. Control Theory Appl. 143 (2), 145151 (1996).CrossRefGoogle Scholar
23.Canudas de Wit, C., Diaz, O. O. and Perrier, M., “Nonlinear control of an underwater vehicle/manipulator with composite dynamics,” IEEE Trans. Control Syst. Technol. 8 (6), 948960 (2000).CrossRefGoogle Scholar
24.Koval, E. V., “Automatic Stabilization System of Underwater Manipulation Robot,” Proceedings in Oceans Engineering for Today's Technology and Tomorrow's Preservation, Brest, France (1994) pp. I/807812.Google Scholar
25.Ac-cess Co UK limited, http://www.ac-cess.com/home (accessed September 22, 2012).Google Scholar
26.Spong, M. K., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control, New York, USA (John Wiley & Sons, 2006).Google Scholar