Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T21:28:27.740Z Has data issue: false hasContentIssue false

A cost-effective robotic solution for the cleaning of ships' hulls

Published online by Cambridge University Press:  22 May 2009

A. Iborra*
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
J. A. Pastor
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
D. Alonso
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
B. Alvarez
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
F. J. Ortiz
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
P. J. Navarro
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
C. Fernández
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
J. Suardiaz
Affiliation:
Universidad Politécnica de Cartagena, División de Sistemas e Ingeniería Electrónica. Campus Muralla del Mar, s/n. Cartagena, E-30202, Spain
*
*Corresponding author. E-mail: [email protected]

Summary

Hull cleaning before repainting is a key operation in the maintenance of ships. For more than a decade, a means to improve this operation has been sought through robotization and the use of different techniques such as grit blasting and ultra high pressure water jetting. Despite this, it continues to be standard practice in shipyards that this process is carried out manually. This paper presents a family of robots that aims to offer important improvements to the process as well as satisfying, to a great extent, all the operative requirements of efficiency, security, and respect for the environment that shipyards nowadays demand. It is described the family of devices with emphasis on the mechanical design. This set consists of two vertical robotic towers and a robot climber. In addition, it is shown the control architecture of the global system. Finally, operative results are presented together with a comparison between the performance achieved in shipyards through the use of these robots and those obtained with a manual process.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smith, A., “Marine coating: The coming future,” Prot. Coat. Eur. 4 (2), 1820 (Feb. 1999).Google Scholar
2.Wayle, A., “Trends for European Shipyards,” Thirtieth International Conference on Automated Applications, Yohaio, Japan (1998) pp. 126130.Google Scholar
3.ISO 8501, “ISO 8501–1:2007. Preparation of steel substrates before application of paints and related products – visual assessment of surface cleanliness,” Int. Organ. Stand. 4 (9), (2007).Google Scholar
4.Schmidt, R., “Evolution of UHP waterjetting equipment: Surface preparation process found to yield higher productivity than grit blasting,” Met. Finish. 103 (11), 4160 (Nov. 2005).CrossRefGoogle Scholar
5.Goldie, B., “Comparing robotic units made to clean vertical surfaces with UHP waterjetting,” Prot. Coat. Eur. 4 (9), 2628 (Sep. 1999).Google Scholar
6.Goldie, B., “A comparative look at dry blast units for vertical surfaces,” Prot. Coat. Eur. 4 (7), 2628 (Jul. 1999).Google Scholar
7.Ross, B., Bares, J. and Fromme, C., “A semi-autonomous robot for stripping paint from large vessels,” Int. J. Robot. Res. 22 (7–8), 617626 (Jul.-Aug. 2003).CrossRefGoogle Scholar
8.Ross, B., Hoburg, J. F., Fromme, C., Bares, J. and DeLouis, M., “Robotic apparatuses, systems and methods,” US Patent App. 10/153,942. (2002).Google Scholar
9.Fu-cai, Y., Li-bin, G., Qing-xin, M. and Fu-qiang, L., “The design of underwater hull-cleaning robot,” J. Mar. Sci. Appl. 3 (1), 4145, (Jun 2004).Google Scholar
10.Longo, D. and Muscato, G., “Natural/Outdoor and Underwater Robots,” Climbing and Walking Robots: Proceedings of the 7th International Conference CLAWAR 2004, Springer, Berlin (2005) pp. 11591170.CrossRefGoogle Scholar
11.Fernández, C., Iborra, A., Álvarez, B., J.Pastor, A., Sánchez, P., Fernández, J. M., and Ortega, N., “Ship shape in Europe: Co-operative robots in the ship repair industry,” IEEE Robot. Autom. Mag. 12 (3), 6577 (Sep. 2005).CrossRefGoogle Scholar
12.Salzer, J. R., Pearlson, D. L. and Vogel, R. F., “The syncrolift system for dry docking ships,” Trans. North East Coast Inst. Eng. Shipbuild. 106 (2), 4955 (1989).Google Scholar
13.Navarro, P., Suardiaz, J., Fernandez, C., Alcover, P., Borraz, R., “Teleoperated Service Robot for High Quality Ship Maintenance,” Eighth IFAC International Workshop on Intelligent Manufacturing Systems, Vol. 8, Alicante, Spain (May 2007) pp. 152157.Google Scholar
14.Navarro, P., Suardiaz, J., Alcover, P., Borraz, R., Mateo, A. and Iborra, A., “Teleoperated Visual Inspection System for Hull Spot-Blasting,” Thirty Second Annual Conference of the IEEE Industrial Electronics Society, IECON'2006, Paris (Nov. 2006) pp. 38453850.Google Scholar
15.Iborra, A., Pastor, J. A., Álvarez, B., Fernández, C. and Fernández-Meroño, J. M., “Robots in radioactive environments,” IEEE Robot. Autom. Mag. 10 (4), 1222 (Dec. 2003).CrossRefGoogle Scholar
16.Álvarez, B., A Iborra, A Alonso and de la Puente, J. A., “Reference architecture for robot teleoperation: Development details and practical use,” Control Eng. Pract. 9 (4), 395402 (Apr. 2001).CrossRefGoogle Scholar
17.Álvarez, B., Sánchez, P., Pastor, J. A. and Ortiz, F., “An architectural framework for modelling teleoperated service robots,” Robotica 24 (4), 411418 (Jul. 2006).CrossRefGoogle Scholar
18.Brown, A. W. and Kurt, C. Wallnau, “The current state of CBSE,” IEEE Softw. 15 (5), 3746 (Sep./Oct 1998).CrossRefGoogle Scholar
19.Schmidt, D., Stal, M., Rohnert, H. and Buschmann, F. (2000). Pattern-Oriented Software Architecture, Volume 2: Patterns for Concurrent and Networked Objects (Wiley, Chichester, England, 2000).Google Scholar
20.Lau, K. and Wang, Z., “Software component models,” IEEE Trans. Softw. Eng. 33 (10), (2007).CrossRefGoogle Scholar
21.Stahl, T. and Vöelter, M., Model-Driven Software Development: Technology, Engineering, Management, 1st ed. (Wiley, Chichester, England, 2006).Google Scholar