Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T15:01:24.976Z Has data issue: false hasContentIssue false

The coordinated motion planning of a dual-arm space robot for target capturing

Published online by Cambridge University Press:  15 September 2011

Wenfu Xu
Affiliation:
Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, P.R. China
Yu Liu*
Affiliation:
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, P.R. China
Yangsheng Xu
Affiliation:
Department of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, Hong Kong, P.R. China
*
*Corresponding author. E-mail: [email protected]

Summary

In this paper, autonomous motion control approaches to generate the coordinated motion of a dual-arm space robot for target capturing are presented. Two typical cases are studied: (a) The coordinated dual-arm capturing of a moving target when the base is free-floating; (b) one arm is used for target capturing, and the other for keeping the base fixed inertially. Instead of solving all the variables in a unified differential equation, the solution equation of the first case is simplified into two sub-equations and practical methods are used to solve them. Therefore, the computation loads are largely reduced, and feasible trajectories can be determined. For the second case, we propose to deal with the linear and angular momentums of the system separately. The linear momentum conservation equation is used to design the configuration and the mounted pose of a balance arm to keep the inertial position of the base's center of mass, and the angular momentum conservation equation is used to estimate the desired momentum generated by the reaction wheels for maintaining the inertial attitude of the base. Finally, two typical tasks are simulated. Simulation results verify the corresponding approaches.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirzinger, G., Landzettel, K., Brunner, B., Fischer, M. and Preusche, C., “DLR's robotics technologies for on-orbit servicing,” Adv. Robot. 18 (2), 139174 (2004).CrossRefGoogle Scholar
2.Coleshill, E., Oshinowo, L., Rembala, R., Bina, B., Rey, D. and Sindelar, S., “Dextre: Improving maintenance operations on the international space station,” Acta Astronaut. 64 (9–10), 869874 (2009).CrossRefGoogle Scholar
3.Yoshida, K., “Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit,” Int. J. Robot. Res. 22 (5), 321335 (2003).CrossRefGoogle Scholar
4.Xu, W. F., Liang, B., Li, C., Liu, Y. and Xu, Y. S., “Autonomous rendezvous and robotic capturing of non-cooperative target in spacet,” Robotica 28 (5), 705718 (2010).CrossRefGoogle Scholar
5.Boning, P. and Dubowsky, S., “Coordinated control of space robot teams for the on-orbit construction of large flexible space structures,” Adv. Robot. 24 (3), 303323 (2010).CrossRefGoogle Scholar
6.Moosavian, S. A. A. and Papadopoulos, E., “Free-flying robots in space: An overview of dynamics modeling, planning and control,” Robotica 25 (5), 537547 (2007).CrossRefGoogle Scholar
7.Wilson, J. R., “Satellite hopes ride on orbital express,” Aerosp. Am. 45 (2), 3035 (2007).Google Scholar
8.Aghili, F., “Optimal Control of a Space Manipulator for Detumbling of a Target Satellite,” In: Proceedings of IEEE International Conference on Robotics and Automation, Kobe, Japan (May 12–17, 2009) pp. 30193024.Google Scholar
9.Rekleitis, I., Martin, E., Rouleau, G., L'Archevêque, R., Parsa, K. and Dupuis, E., “Autonomous capture of a tumbling satellite,” J. Field Robot. 24 (4), 275296 (2007) (special issue on Space Robotics).CrossRefGoogle Scholar
10.Umetani, Y. and Yoshida, K., “Resolved motion rate control of space manipulators with generalized jacobian matrix,” IEEE Trans. Robot. Autom. 5 (3), 303314 (1989).CrossRefGoogle Scholar
11.Umetani, Y. and Yoshida, K., “Workspace and manipulability analysis of space manipulator,” Trans. Soc. Instrum. Control Eng. E-1 (1), 116123 (2001).Google Scholar
12.McCourt, Richard A. and de Silva, C. W., “Autonomous robotic capture of a satellite using constrained predictive control,” IEEE/ASME Trans. Mechatronics 11 (6), 699708 (2006).CrossRefGoogle Scholar
13.Papadopoulos, E. and Dubowsky, S., “Coordinated Manipulator/Spacecraft Motion Control for Space Robotic Systems,” In: Proceedings of International Conference on Robotics and Autanatim, Sacramento, CA, USA (April 9–11, 1991) pp. 16961701.Google Scholar
14.Moosavian, S. A. A. and Papadopoulos, E., “On the kinematics of multiple manipulator space free-flyers and their computation,” J. Robot. Syst. 15 (4), 207216 (1998).3.0.CO;2-T>CrossRefGoogle Scholar
15.Rastegari, R. and Moosavian, S. A. A., “Multiple impedance control of space free-flying robots via virtual linkages,” Acta Astronaut. 66 (5–6), 748759 (2010).CrossRefGoogle Scholar
16.Hu, Y.-R. and Vukovich, G., “Dynamic control of free-floating coordinated space robots,” J. Robot. Syst. 15 (4), 217230 (1998).3.0.CO;2-S>CrossRefGoogle Scholar
17.Yoshida, K., Kurazume, R. and Umetani, Y., “Dual Arm Coordination in Space Free-Flying Robot,” In: Proceedings of IEEE International Conference on Robotics and Automation (IEEE Press, Piscataway, NJ, 1991), pp. 25162521.Google Scholar
18.Yoshida, K., Kurazume, R. and Umetani, Y., “Torque Optimization Control in Space Robots with a Redundant Arm,” In: Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS '91), Osaka, Japan (Nov 3–5, 1991) pp. 16471652.Google Scholar
19.Papadopoulos, E. and Dubowsky, S., “Dynamic singularities in the control of free-floating space manipulators,” ASME, J. Dyn. Syst. Meas. Control 115 (1), 4452 (1993).CrossRefGoogle Scholar
20.Huang, P. F., Xu, Y. S. and Liang, B., “Dynamic balance control of multi-arm free-floating space robots,” Int. J. Adv. Robot. Syst. 2 (2), 117124 (2005).CrossRefGoogle Scholar
21.Agrawal, S. K. and Shirumalla, S., “Planning motions of a dual-arm free-floating manipulator keeping the base inertially fixed,” Mech. Mach. Theory 30 (1), 5970 (1995).CrossRefGoogle Scholar
22.Xu, Y. S. and Kanade, T., Space Robotics: Dynamics and Control (Kluwer, Norwell, MA, 1992).Google Scholar
23.Vafa, Z. and Dubowsky, S., “The kinematics and dynamics of space manipulators: The virtual manipulator approach,” Int. J. Robot. Res. 9 (4), 321 (1990).CrossRefGoogle Scholar
24.Yokokohji, Y., Toyoshima, T. and Yoshikawa, T., “Efficient computational algorithms for trajectory control of free-flying space robots with multiple arms,” IEEE Trans. Robot. Autom. 9 (5), 571580 (1993).CrossRefGoogle Scholar
25.Yoshida, K. and Umetani, Y., “Control of Space Manipulators with Generalized Jacobian Matrix,” In: Space Robotics: Dynamics and Control (Xu, Y. S. and Kanade, T., eds.) (Kluwer, Norwell, MA, 1993) pp. 165204.CrossRefGoogle Scholar
26.Masutani, Y., Miyazaki, F. and Arimoto, S., “Sensory Feedback Control for Space Manipulators,” In: Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA (May 14–19, 1989) pp. 13461351.Google Scholar
27.Masutani, Y., Miyazaki, F. and Arimoto, S., “Sensory Feedback Control for Space Manipulators,” In: Space Robotics: Dynamics and Control (Xu, Y. S. and Kanade, T., eds.) (Kluwer, Norwell, MA, 1993) pp. 205227.CrossRefGoogle Scholar
28.Xu, W. F., Liang, B. and Xu, Y. S., “Practical approaches to handle the singularities of a type of space robotic system,” Acta Astronaut. 68 (1–2), 269300 (Jan–Feb 2011).CrossRefGoogle Scholar
29.Ogilvie, A., Allport, J., Hannah, M. and Lymer, J., “Autonomous Robotic Operations for On-Orbit Satellite Servicing,” In: Proceedings of Sensors and Systems for Space Applications II, SPIE, vol. 6958 (Howard, R. T.; and Motaghedi, P., eds.) (SPIE, Bellingham WA, 2008), pp. 695809-1–695809-12.Google Scholar
30.Motaghedi, P., “On-Orbit Performance of the Orbital Express Capture System,” In: Proceedings of Sensors and Systems for Space Applications II, SPIE, vol. 6958 (Howard, R. T.; and Motaghedi, P., eds.) (SPIE, Bellingham WA, 2008), pp. 69580E-1–69580E-12.Google Scholar
31.Friend, R. B., “Orbital Express Program Summary and Mission Overview,” In: Proceedings of SPIE, Sensors and Systems for Space Applications II, vol. 6958 (Howard, R. T.; and Motaghedi, P., eds.) (SPIE, Bellingham WA, 2008), pp. 695803-1–695803-11.Google Scholar