Published online by Cambridge University Press: 09 March 2009
This paper presents the conceptual designs, kinematics and dynamics modeling of a cooperative re-configurable Dual-Arm Cam-Lock Manipulator. A cam-lock manipulator is a robotics structure with a pair of multi-degree of freedom planar arms jointed together at a shared base. This manipulator is designed to be capable of performing a wide variety of tasks by automatically re-configuring itself to form a variable geometry, stiffness, damping, and workspace robotics structure by the virtue of a novel link/joint design along i''s arms, labeled as the cam-lock design. The kinematics and dynamics of this manipulator is described using admissible variables (i.e., variables that define the constrained admissible motion). Along with the dynamic relations of this manipulator, a generic equation was also developed for the joint servo system.