Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T08:50:49.815Z Has data issue: false hasContentIssue false

Collision-free configuration-spaces in macromolecular crystals

Published online by Cambridge University Press:  22 January 2016

Gregory S. Chirikjian*
Affiliation:
Department of Mechanical Engineering. E-mail: [email protected] Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218, USA
Bernard Shiffman
Affiliation:
Department of Mathematics. E-mail: [email protected] Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218, USA
*
*Corresponding author.

Summary

Molecular replacement (MR) is a well-established computational method for phasing in macromolecular crystallography. In MR searches, spaces of motions are explored for determining the appropriate placement of rigid single-body (or articulated multi-rigid-body) models of macromolecules. By determining a priori which portions of motion space correspond to non-physical packing arrangements with symmetry mates in collision, it becomes feasible to construct more efficient MR techniques which avoid searching in these non-realizable regions of motion space. This paper investigates which portion of the motion space is physically realizable, given that packing of protein molecules in a crystal are subject to the constraint that they cannot interpenetrate, and gives explicit expressions for the volume of the non-realizable regions for crystals in two-dimensions.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(1) This paper is an expanded version of a paper delivered at the Workshop on Robotics Methods for Structural and Dynamic Modeling of Molecular Systems in July 2014 at Berkeley, CA (cs.unm.edu/amprg/rss14workshop/PAPERS/Chirikjian.pdf).

References

1. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E., “The protein data bank,” Nucleic Acids Res. 28 (1), 235242 (2000).Google Scholar
2. Blaschke, W., Vorlesungen über Integralgeometrie (Deutscher Verlag der Wissenschaften, Berlin, 1955).Google Scholar
3. Brothers, J. E., “Integral geometry in homogeneous spaces,” Trans. Amer. Math. Soc. 124, 408517 (1966).CrossRefGoogle Scholar
4. Chern, S.-S., “On the kinematic formula in the Euclidean space of N dimensions,” Am. J. Math. 74 (1), 227236 (1952).CrossRefGoogle Scholar
5. Chirikjian, G. S., “Mathematical aspects of molecular replacement: I. Algebraic properties of motion spaces,” Acta Cryst. A A67, 435446 (2011).Google Scholar
6. Chirikjian, G. S. and Yan, Y., “Mathematical aspects of molecular replacement: II. Geometry of motion Spaces,” Acta Cryst. A68, 208221 (2012).Google Scholar
7. Dunbar, W. D., Fibered Orbifolds and Crystallographic Groups, Ph.D. Dissertation, Department of Mathematics, Princeton University (ProQuest Dissertations Publishing, Ann Arbor, Michigan, 1981).Google Scholar
8. Grosse-Kunstleve, R. W., Wong, B., Mustyakimov, M. and Adams, P. D., “Exact direct-space asymmetric units for the 230 crystallographic space groups,” Acta Cryst. A 67 (3), 269275 (2011).CrossRefGoogle ScholarPubMed
9. Hahn, T., ed., International Tables for Crystallography, Space Group Symmetry: Brief Teaching Edition (Springer, New York, 2002).Google Scholar
10. Iversen, B., Lectures on Crystallographic Groups, Lecture Notes Series, vol. 60 (Aarhus Universitet, Matematisk Institut, Aarhus, Denmark, 1990).Google Scholar
11. Klain, D. A. and Rota, G.-C., Introduction to Geometric Probability (Cambridge University Press, Cambridge, England, 1997).Google Scholar
12. Lucić, Z. and Molnár, E., “Fundamental domains for planar discontinuous groups and uniform tilings,” Geometriae Dedicata 40 (2), 125143 (1991).Google Scholar
13. Orlov, I., Schoeni, N. and Chapuis, G., “Crystallography on mobile phones,” J. Appl. Cryst. 39, 595597 (2006). http://escher.epfl.ch/mobile/ CrossRefGoogle Scholar
14. Rossmann, M. G., “Molecular replacement - historical background,” Acta Cryst. D 57, 13601366 (2001).Google Scholar
15. Rossmann, M. G. and Blow, D. M., “The detection of sub-units within the crystallographic asymmetric unit,” Acta Cryst. 15, 2431 (1962).Google Scholar
16. Santaló, L., Integral Geometry and Geometric Probability (Cambridge University Press, 2004) (originally published in 1976 by Addison–Wesley)Google Scholar
17. Schneider, R., “Kinematic measures for sets of colliding convex bodies,” Mathematika 25, 112 (1978).Google Scholar
18. Schneider, R. and Weil, W., Stochastic and Integral Geometry (Springer-Verlag, Berlin, 2008).Google Scholar
19. Trandafir, R., “Problems of integral geometry of lattices in an Euclidean space E 3 ,” Boll. dell'Unione Mat. Ital. 22 (3), 228235 (1967).Google Scholar
20. Yan, Y. and Chirikjian, G. S., “Closed-form characterization of the Minkowski sum and difference of two ellipsoids,” Geometriae Dedicata 177, 103128 (2015).Google Scholar