Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T00:27:46.471Z Has data issue: false hasContentIssue false

Analysis of exit probability for a trajectory tracking robot in case of a rare event

Published online by Cambridge University Press:  09 July 2021

Rohit Rana*
Affiliation:
Instrumentation and Control Engineering Department, Netaji Subhas University of Technology, New Delhi, India
Prerna Gaur
Affiliation:
Instrumentation and Control Engineering Department, Netaji Subhas University of Technology, New Delhi, India
Vijyant Agarwal
Affiliation:
Mechanical Engineering Department, Netaji Subhas University of Technology, New Delhi, India
Harish Parthasarathy
Affiliation:
Electronics and Communication Engineering Department, Netaji Subhas University of Technology, New Delhi, India
*
*Corresponding author. E-mail: [email protected]

Abstract

In this paper, a novel statistical application of large deviation principle (LDP) to the robot trajectory tracking problem is presented. The exit probability of the trajectory from stability zone is evaluated, in the presence of small-amplitude Gaussian and Poisson noise. Afterward, the limit of the partition function for the average tracking error energy is derived by solving a fourth-order system of Euler–Lagrange equations. Stability and computational complexity of the proposed approach is investigated to show the superiority over the Lyapunov method. Finally, the proposed algorithm is validated by Monte Carlo simulations and on the commercially available Omni bundleTM robot.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barral, J. and Loiseau, P., “Large deviations for the local fluctuations of random walks,” Stochastic Process. Appl. 121(10), 22722302 (2011). doi: 10.1016/j.spa.2011.06.004 CrossRefGoogle Scholar
Befekadu, G. K., “Large deviation principle for dynamical systems coupled with diffusion–transmutation processes,” Syst. Control Lett. 125, 915 (2019). doi: 10.1016/j.sysconle.2019.01.003 CrossRefGoogle Scholar
Arous, G. B. and Sortais, M., “Large deviations in the Langevin dynamics of a random field Ising model,” Stochastic Process. Appl. 105(2), 211255 (2003). doi: 10.1016/S0304-4149(02)00265-X.CrossRefGoogle Scholar
Massah, M., Nicol, M. and Kantz, H., “Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems,” Phys. Rev. E 97(5), 052147(1)–052147(7) (2018). doi: 10.1103/PhysRevE.97.052147.CrossRefGoogle Scholar
Varadhan, S. R. S., “The role of topology in large deviations,” Expositiones Mathematicae 36(3–4), 362368 (2018). doi: 10.1016/j.exmath.2018.07.005.CrossRefGoogle Scholar
Young, L.-S., “Some large deviation results for dynamical systems,” Trans. Am. Math. Soc. 318(2), 525543 (1990).Google Scholar
Chatterjee, S. and Varadhan, S. R. S., “The large deviation principle for the Erdős-Rényi random graph,” Eur. J. Comb. 32(7), 10001017 (2011). doi: 10.1016/j.ejc.2011.03.014.CrossRefGoogle Scholar
Dembo, A. and Zeitouni, O., Large Deviations Techniques and Applications, 2nd edn. (Springer, Berlin, Heidelberg, 2010). doi: 10.1007/978-3-642-03311-7.CrossRefGoogle Scholar
Varadhan, S. R. S., “Large deviations,” Courant Lect. Notes 27, 104 (2016). https://bookstore.ams.org/cln-27.Google Scholar
Touchette, H., “A basic introduction to large deviations: Theory, applications, simulations,” 1–58 (2012), arXiv:1106.4146v3.Google Scholar
Rana, R., Gaur, P., Agarwal, V. and Parthasarathy, H., “Tremor estimation and removal in robot-assisted surgery using lie groups and EKF,” Robotica 37(11), 1904–1921 (2019).CrossRefGoogle Scholar
Chen, W.-H., Ballance, D. J., Gawthrop, P. J. and O’Reilly, J., “A nonlinear disturbance observer for robotic manipulators,” IEEE Trans. Ind. Electr. 47(4), 932938 (2000). doi: 10.1109/41.857974.CrossRefGoogle Scholar
Agarwal, V. and Parthasarathy, H., “Disturbance estimator as a state observer with extended Kalman filter for robotic manipulator,” Nonlinear Dyn. 85, 28092825 (2016). doi: 10.1007/s11071-016-2864-4.CrossRefGoogle Scholar
Parthasarathy, K. R., Probability Measures on Metric Spaces (Academic Press, 1967), ISBN-978-1-4832-0022-4). doi: 10.1016/C2013-0-08107-8.Google Scholar
Jing, C., Xu, H. and Niu, X., “Adaptive sliding mode disturbance rejection control with prescribed performance for robotic manipulators,” ISA Trans. 91, 4151 (2019). doi: 10.1016/j.isatra.2019.01.017.CrossRefGoogle ScholarPubMed
Lei, R.-H. and Chen, L., “Adaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters,” Defence Technol. 15(6), 964971 (2019). doi: 10.1016/j.dt.2019.07.010.CrossRefGoogle Scholar
Zheng, W., Wang, H., Zhang, Z. and Wang, H., “Adaptive robust finite-time control of mobile robot systems with unmeasurable angular velocity via bioinspired neurodynamics approach,” Eng. Appl. Artif. Intell. 82, 330344 (2019). doi: 10.1016/j.engappai.2019.04.009.CrossRefGoogle Scholar
Londhe, P. S., Mohan, S., Patre, B. M. and Waghmare, L. M., “Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator,” Ocean Eng. 139, 113 (2017). doi: 10.1016/j.oceaneng.2017.04.030.CrossRefGoogle Scholar
Nygaard, A., High-Level Control System for. Remote Controlled Surgical Robots. Haptic Guidance of Surgical Robot Master’s thesis NTNU (Institutt for teknisk kybernetikk, 2008).Google Scholar
Singla, R., Parthasarathy, H. and Agarwal, V., “Classical robots perturbed by Lévy processes: Analysis and Lévy disturbance rejection methods,” Nonlinear Dyn. 89, 553575 (2017). doi: 10.1007/s11071-017-3471-8.CrossRefGoogle Scholar
Rana, R., Agarwal, V., Gaur, P. and Parthasarathy, H., “Design of optimal UKF state observer–controller for stochastic dynamical systems,” IEEE Trans. Ind. Appl. 57(2), 1840–1859 (2021). doi: 10.1109/TIA.2020.3048647.Google Scholar
Alandoli, E. A. and Lee, T. S., “A critical review of control techniques for flexible and rigid link manipulators,” Robotica 38(12), 22392265 (2020). doi: 10.1017/S0263574720000223.CrossRefGoogle Scholar
Gul, S., Zergeroglu, E., Tatlicioglu, E. and Kilinc, M. V., “Desired model compensation-based position constrained control of robotic manipulators,” Robotica, 1–15 (2021). doi:10.1017/S0263574721000527. CrossRefGoogle Scholar
Izadbakhsh, A. and Khorashadizadeh, S., “Polynomial-based robust adaptive impedance control of electrically driven robots,” Robotica, 1–21 (2020). doi: 10.1017/S0263574720001009.CrossRefGoogle Scholar
Datouo, R., Mvogo Ahanda, J. J.-B., Melingui, A., Biya-Motto, F. and Essimbi Zobo, B., “Adaptive fuzzy finite-time command-filtered backstepping control of flexible-joint robots,” Robotica 39(6), 10811100 (2021). doi: 10.1017/S0263574720000910.CrossRefGoogle Scholar
Garcia, M., Castillo, P., Campos, E. and Lozano, R., “Design, construction, and control for an underwater vehicle type sepiida,” Robotica 39(5), 798815 (2021). doi: 10.1017/S0263574720000739.CrossRefGoogle Scholar
Schilling, R. J., “Manipulator Dynamics,” In: Fundamentals of Robotics Analysis and Control, 2nd edn. (Pearson Education, Prentice Hall, 2017).Google Scholar