Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:45:49.308Z Has data issue: false hasContentIssue false

The AMP-Foot 2.1 : actuator design, control and experiments with an amputee

Published online by Cambridge University Press:  02 September 2014

Pierre Cherelle*
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
Karen Junius
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
Victor Grosu
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
Heidi Cuypers
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
Bram Vanderborght
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
Dirk Lefeber
Affiliation:
Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels, Belgium
*
*Corresponding author. E-mail: [email protected]

Summary

The Ankle Mimicking Prosthetic (AMP-) Foot 2 is a new energy efficient, powered transtibial prosthesis mimicking intact ankle behavior. The author's research is focused on the use of a low power actuator which stores energy in springs during the complete stance phase. At push-off, this energy can be released hereby providing propulsion forces and torques to the amputee. With the use of the so-called catapult actuator, the size and weight of the drive can be decreased compared to state-of-the-art powered prostheses, while still providing the full power necessary for walking.

In this article, the authors present a detailed description of the catapult actuator followed by a comparison with existing actuator technology in powered prosthetic feet with regard to torque and power requirements. The implication on the actuator's design will then be outlined. Further, a description of the control strategy behind the AMP-Foot 2 and 2.1 will be given. In the last section of the article, the actuation principle and control are illustrated by experimental validation with a transfemoral amputee. Conclusions and future work complete the paper.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Carroll, K. and Edelstein, J. E., “Prosthetics and patient management: A comprehensive clinical approach,” SLACK Incorporated (2006).Google Scholar
2.Murdoch, G. and Wilson, A. B. J., “Amputation: Surgical practice and patient management,” Butterworth-Heinemann Medical (1996).Google Scholar
3.Gitter, A., Czerniecki, J. M. and DeGroot, D., “Bieomechanical analysis of the influence of prosthetic feet on below-knee amputee walking,” Am. J. Phys. MedRehabil. 70 (3), 142148 (Oct. 2006).Google Scholar
4.Bowker, J., Goldberg, B. and Poonekar, P., “Atlas of limb prosthetics: Surgical, prosthetic, and rehabilitation principles,” American Academy of Orthopaedic Surgeons (1992).Google Scholar
5.Rao, S., Boyd, L., Mulroy, S., Bontrager, E., Gronley, J. and Perry, J., “Segment velocities in normal and transtibial amputees: prosthetic design implications.” IEEE Trans. Rehabil. Eng. 6 (2), 219226 (1998).Google Scholar
6.Mitchell, M., Craig, K., Kyberd, P., Biden, E. and Bush, G., “Design and development of ankle-foot prosthesis with delayed release of plantarflexion,” J. Rehabil. Res Dev. 50 (3), 114 (Jan. 2002).Google Scholar
7.Brackx, B., Van Damme, M., Matthys, A., Vanderborght, B. and Lefeber, D., “Passive ankle-foot prosthesis prototype with extended push-off,” Int. J. Adv. Robot. Syst. 10, 19 (2013).Google Scholar
8.Collins, S. H. and Kuo, A. D., “Controlled Energy Storage and Return Prosthesis Reduces Metabolic Cost of Walking,” ISB XXth Congess - ASB 29th Annual Meeting (2005).Google Scholar
9.Versluys, R., Desomer, A., Lenaerts, G., Pareit, O., Vanderborght, B., der Perre, G. V., Peeraer, L. and Lefeber, D., “A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles,” Int. J. Modelling Identi. Control 4 (4), 112 (Nov. 2008).CrossRefGoogle Scholar
10.Hitt, J. K., Sugar, T. G., Holgate, M. and Bellman, R., “An active foot-ankle prosthesis with biomechanical energy regeneration,” J. Med. Dev. 4 (1), 011003 (2010).CrossRefGoogle Scholar
11.Au, S. K. and Herr, H., “Powered ankle-foot prosthesis,” IEEE Robot. Autom. Mag. 15, 5259 (Jan. 2008).CrossRefGoogle Scholar
12.Goldfarb, M., Lawson, B. E. and Shultz, A. H., “Realizing the promise of robotic leg prostheses,” Sci. Transl. Med. 5 (210), 210215 (2013).Google Scholar
13.Caputo, J. M. and Collins, S. H., “Externally Powered and Controlled Ankle-Foot Prosthesis,” Proceedings of Dynamic Walking (Sep. 2011) pp. 1–2.Google Scholar
14.Zhu, J., Wang, Q. and Wang, L., “On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints,” IEEE Trans. Ind. Electron. 61 (9), 1479714807 (2013).Google Scholar
15.Riele, F., “The heelfoot : Design of a plantarflexing posthetic foot.” Ph.D. dissertation, Twente University, Enschede, The Netherlands (Sep. 2003).Google Scholar
16.Mitchell, M., Craig, K., Kyberd, P., Biden, E. and Bush, G., “Design and development of ankle-foot prosthesis with delayed release of plantarflexion,” J. Rehabil. Res. Dev. 50 (3), 409422 (2013).Google Scholar
17.Williams, R., Hansen, A. and Gard, S., “Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface.” J. Biomech. Eng. 131 (3), 17 (2009).Google Scholar
18.Yuan, K., Sun, S., Wang, Z., Wang, Q. and Wang, L., “A Fuzzy Logic Based Terrain Identification Approach to Prosthesis Control Using Multi-Sensor Fusion,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013) pp. 3376–3381.Google Scholar
19.Eilenberg, M. F., Geyer, H. and Herr, H., “Control of a powered ankle-foot prosthesis based on a neuromuscular model,” IEEE Trans. Neural Syst. Rehabil. Eng. 18 (2), 164173 (Apr. 2010).CrossRefGoogle ScholarPubMed
20.Artemiadis, P. K., “Emg-based robot control interfaces: Past, present and future,” Adv. Robot. Autom. (2012).CrossRefGoogle Scholar
21.Verrelst, B., Van Ham, R., Vanderborght, B., Daerden, F., Van Damme, M. and Lefeber, D., “Second generation pleated pneumatic artificial muscle and its robotic applications,” Adv. Robot. 20 (7), 783805 (2006).CrossRefGoogle Scholar
22.Grimmer, M., Eslamy, M., Gliech, S. and Seyfarth, A., “A Comparison of Parallel- and Series Elastic Elements in an Actuator for Mimicking Human Ankle Joint in Walking and Running,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2012) pp. 2463–2470.Google Scholar
23.Haeufle, D. F. B., Taylor, M. D., Schmitt, S. and Geyer, H., “A Clutched Parallel Elastic Actuator Concept: Towards Energy Efficient Powered Legs in Prosthetics and Robotics,” Proceedings of the 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (2012) pp. 1614–1619.Google Scholar
24.Pratt, G. A. and Williamson, M. M., “Series Elastic Actuators,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1995) pp. 399–406.Google Scholar
25.Sugar, T. G., “A novel selective compliant actuator,” Mechatronics 12 (9–10), 11571171 (Jan. 2002).Google Scholar
26.Van Ham, R., Van Damme, M., Verrelst, B., Vanderborght, B. and Lefeber, D., “Maccepa, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot,” Robot. Auton. Syst. 55 (10), 761768 (2007).Google Scholar
27.Mathijssen, G., Cherelle, P., Lefeber, D. and Vanderborght, B., “Concept of a series-parallel elastic actuator for a powered transtibial prosthesis,” Eds. MDPI Actuators 2 (3), 5973 (2013).Google Scholar
28.Versluys, R., Beyl, P., Van Damme, M., Desomer, A., Van Ham, R. and Lefeber, D., “Prosthetic feet: State-of-the-art review and the importance of mimicking human ankle–foot biomechanics,” Disability Rehabil.: Assist. Technol. 4 (2), 6575 (Jan. 2009).Google Scholar
29.Hafner, B. J., Sanders, J. E., Czerniecki, J. M. and Fergason, J., “Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature,” J. Rehabil. Res. Dev. 39 (1), 112 (Jan. 2002).Google Scholar
30.Au, S. K., Weber, J. and Herr, H., “Powered ankle-foot prosthesis improves walking metabolic economy.” IEEE Trans. Robot. 25 (1), 5166 (2009).Google Scholar
31.Sup, F., Bohara, A. and Goldfarb, M., “Design and control of a powered transfemoral prosthesis,” Int. J. Robot. Res. 112 (Jan. 2008).Google Scholar
32.Vanderborght, B., Albu-Schaffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L. and Wolf, S., “Variable impedance actuator: A review,” Robot. Auton. Syst. 61 (12), 16011614 (2013).Google Scholar
33.Cherelle, P., Grosu, V., Matthys, A., Vanderborght, B. and Lefeber, D., “Design and validation of the ankle mimicking prosthetic (amp-) foot 2.0,” IEEE Trans. Neural Syst. Rehabil. Eng. 22 (1), 138148 (2013).Google Scholar
34.Winter, D. A., “The biomechanics and motor control of human gait: Normal, elderly and pathological,” Waterloo Biomechancs 2 (1991).Google Scholar
35.Vanderborght, B., Tsagarakis, N. G., Semini, C., Ham, R. V. and Caldwell, D. G., “Maccepa 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping,” Proceedings of the IEEE International Conference on Robotics and Automation (2009) pp. 12–17.Google Scholar
36.Haddadin, S., Laue, T., Frese, U., Wolf, S., Albu-Schaffer, A. and Hirzinger, G., “Kick it with elasticity: Safety and performance in human-robot soccer,” Robot. Auton. Syst. 57, 761775 (2009).Google Scholar
37.Braun, D., Howard, M. and Vijayakumar, S., “Optimal variable stiffness control: Formulation and application to explosive movement tasks,” Auton. Robots (2012).Google Scholar
38.Garabini, M., Passaglia, A., Belo, F., Salaris, P. and Bicchi, A., “Optimality principles in variable stiffness control: The vsa hammer,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2011).Google Scholar
39.Martin, J., Mécanismes à mouvements intermittents (Bordas, Dunod, France, 1974).Google Scholar
40.van Oort, G., Carloni, R., Borgerink, D. J. and Stramigioli, S., “An energy efficient knee locking mechanism for a dynamically walking robot,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2011) pp. 9–13.Google Scholar
41.Grimmer, M. and Seyfarth, A., “Stiffness adjustment of a series elastic actuator in an ankle-foot prosthesis for walking and running: The trade-off between energy and peak power optimization,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2011) pp. 1439–1444.Google Scholar