Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T11:06:56.208Z Has data issue: false hasContentIssue false

Adaptive robust control for Pendubot with matched–mismatched uncertainty via constraint-following

Published online by Cambridge University Press:  17 January 2023

Cui Wei*
Affiliation:
Institute of Intelligent Manufacturing, Nanjing Tech University, Nanjing 210009, China
Ye-Hwa Chen
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Tianyou Chai
Affiliation:
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
Jun Fu
Affiliation:
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
*
*Corresponding author. E-mail: [email protected]

Abstract

The study presents an adaptive robust control method for the Pendubot subjects to matched and mismatched uncertainty. First, the control task is formatted as a reduced-dimension equality constraint of the system states. To handle the matched and mismatched uncertainties, an orthogonal decomposition method is employed to make the mismatched part disappear after decomposition. Based on the above, an adaptive robust control law based on constraint-following is devised. By the Lyapunov approach, it is rigorously proven that the proposed approach ensures the uniform boundedness and uniform ultimate boundedness of the closed-loop control system and thus renders approximate constraint-following, regardless of uncertainty. Simulation and experimental results are provided and discussed, demonstrating the good performance of the proposed approach.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminsafaee, M. and Shafiei, M. H., “A robust approach to stabilization of 2-dof underactuated mechanical systems,” Robotica 38(12), 22212238 (2020).CrossRefGoogle Scholar
Zabihifar, S. H., Navvabi, H. and Yushchenko, A. S., “Dual adaptive neural network controller for underactuated systems,” Robotica 39(7), 12811298 (2021).CrossRefGoogle Scholar
He, G., Zhang, C., Sun, W. and Geng, Z., “Stabilizing the second-order nonholonomic systems with chained form by finite-time stabilizing controllers,” Robotica 34(10), 23442367 (2016).CrossRefGoogle Scholar
Chen, H. and Sun, N., “An output feedback approach for regulation of 5-dof offshore cranes with ship yaw and roll perturbations,” IEEE Trans. Ind. Electron. 69(2), 17051716 (2022).CrossRefGoogle Scholar
Yin, H., Chen, Y. H. and Yu, D., “Controlling an underactuated two-wheeled mobile robot: A constraint-following approach,” J. Dyn. Syst. Meas. Contr. 141(7), 071002–19 (2019).CrossRefGoogle Scholar
Hota, R. and Kumar, C., “Effect of design parameters on strong and immobilizing grasps with an underactuated robotic hand,” Robotica 40(11), 37693785 (2022). doi: 10.1017/S0263574722000601.CrossRefGoogle Scholar
Xie, W., Cabecinhas, D., Cunha, R. and Silvestre, C., “Robust motion control of an underactuated hovercraft,” IEEE Trans. Control Syst. Technol. 27(5), 21952208 (2018).CrossRefGoogle Scholar
Zhang, J. and Yang, G., “Fault-tolerant fixed-time trajectory tracking control of autonomous surface vessels with specified accuracy,” IEEE Trans. Ind. Electron. 67(6), 48894899 (2020).CrossRefGoogle Scholar
Zhang, J. and Chai, T., “Singularity-free continuous adaptive control of uncertain underactuated surface vessels with prescribed performance,” IEEE Trans. Syst. Man Cybern.: Syst. 52(9), 56465655 (2022). doi: 10.1109/TSMC.2021.3129798.CrossRefGoogle Scholar
Chen, T., Shan, J. and Wen, H., “Distributed adaptive attitude control for networked underactuated flexible spacecraft,” IEEE Trans. Aerosp. Electron. Syst. 55(1), 215225 (2019).CrossRefGoogle Scholar
Spong, M. W. and Block, D. J.. The Pendubot: A mechatronic system for control research and education. In: Proceedings of 1995 34th IEEE Conference on Decision and Control (1995) pp. 555556.Google Scholar
Fantoni, I., Lozano, R. and Spong, M. W., “Energy based control of the Pendubot,” IEEE Trans. Autom. Contr. 45(4), 725729 (2000).CrossRefGoogle Scholar
Albahkali, T., Mukherjee, R. and Das, T., “Swing-up control of the Pendubot: An impulse-momentum approach,” IEEE Trans. Robot. 25(4), 975982 (2009).CrossRefGoogle Scholar
Xia, D., Wang, L. and Chai, T., “Neural-network-friction compensation-based energy swing-up control of Pendubot,” IEEE Trans. Ind. Electron. 61(3), 14111423 (2014).CrossRefGoogle Scholar
Xia, D., Chai, T. and Wang, L., “Fuzzy neural-network friction compensation-based singularity avoidance energy swing-up to nonequilibrium unstable position control of Pendubot,” IEEE Trans. Control Syst. Technol. 22(2), 690705 (2014).CrossRefGoogle Scholar
Eom, M. and Chwa, D., “Robust swing-up and balancing control using a nonlinear disturbance observer for the Pendubot system with dynamic friction,” IEEE Trans. Robot. 31(2), 331343 (2015).CrossRefGoogle Scholar
Wei, C., Chai, T., Xin, X., Chen, X. and Chen, Y. H., “A signal compensation-based robust swing-up and balance control method for the Pendubot,” IEEE Trans. Ind. Electron. 69(3), 30073016 (2022).CrossRefGoogle Scholar
Yin, H., Chen, Y. H., Huang, J. and , H., “Tackling mismatched uncertainty in robust constraint-following control of underactuated systems,” Inf. Sci. 520, 337352 (2020).CrossRefGoogle Scholar
Wei, C., Chai, T., Yao, J. and Wang, L., “Compensation signal driven adaptive balance control of the Pendubot,” Acta Autom. Sin. 45(6), 11461156 (2019).Google Scholar
Yu, R., Chen, Y. H., Zhao, H. and Sun, H., “Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared,” Nonlinear Dyn. 95(4), 27652782 (2019).CrossRefGoogle Scholar
Chen, Y. H., “On the deterministic performance of uncertain dynamical systems,” Int. J. Control 43(5), 15571579 (1986).CrossRefGoogle Scholar
Corless, M. and Leitmann, G., “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Autom. Control 26(5), 11391144 (1981).CrossRefGoogle Scholar