Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:59:13.434Z Has data issue: false hasContentIssue false

Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots

Published online by Cambridge University Press:  29 May 2014

Mario Emanuel Serrano*
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, San Juan, Argentina E-mails: [email protected], [email protected]
Gustavo Juan Eduardo Scaglia
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, San Juan, Argentina E-mails: [email protected], [email protected]
Fernando Auat Cheein
Affiliation:
Universidad Técnica Federico Santa María, Valparaíso, Chile E-mail: [email protected]
Vicente Mut
Affiliation:
Instituto de Automática, Universidad Nacional de San Juan, San Juan, Argentina E-mail: [email protected]
Oscar Alberto Ortiz
Affiliation:
Instituto de Ingeniería Química, Universidad Nacional de San Juan, San Juan, Argentina E-mails: [email protected], [email protected]
*
*Corresponding author. E-mail: [email protected]

Summary

This paper is a continuation of a previous work of authors, Scaglia et al. [G. J. E. Scaglia, L. M. Quintero, V. Mut and F. Di Sciascio, “Numerical methods based controller design for mobile robots,” Robotica27(2), 269–279 (2009)]. A method is presented to choose the controller parameters such that, the values of the control actions do not exceed the maximum allowable and the tracking errors tend to zero. In addition, the analysis of the controller design parameters is included. The experimental results (laboratory experiments and a real world application) demonstrate the efficiency of the controller.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scaglia, G. J. E., Quintero, L. M., Mut, V. and Di Sciascio, F., “Numerical methods based controller design for mobile robots,” Robotica 27 (2), 269279 (2009).Google Scholar
2. Lee, T. C., Song, K. T., Lee, C. H. and Teng, C. C., “Tracking control of unicycle modeled mobile robots using a saturation feedback controller,” IEEE Trans. Control Syst. Technol. 9 (2), 305318 (2001).Google Scholar
3. Klancar, G. and Skrjanc, I., “Tracking-error model-based predictive control for mobile robots in real time,” Robot. Auton. Syst. 55 (6), 460469 (2007).Google Scholar
4. Sun, S. and Cui, P., “Path tracking and a practical point stabilization of mobile robot,” Robot. Comput.-Integr. Manuf. 20, 2934 (2004).Google Scholar
5. Oriolo, G., Luca, A. and Vandittelli, M., “WMR control via dynamic feedback linearization: Design, implementation, and experimental validation,” IEEE Trans. Control Syst. Technol. 10 (6), 835852 (2002).Google Scholar
6. Scaglia, G. J. E., Rosales, A., Quintero, L. M., Mut, V. and Agarwal, R., “A linear-interpolation-based controller design for trajectory tracking of mobile robots,” Control Eng. Practice 18, 318329 (2010).Google Scholar
7. Rosales, A., Scaglia, G. J. E., Mut, V. and Di Sciascio, F., “Formation control and trajectory tracking of mobile robotic systems – A linear algebra approach,” Robotica 29 (3), 335349 (2011).Google Scholar
8. Rosales, A., Scaglia, G. J. E., Mut, V. and Di Sciascio, F., “Trajectory tracking of mobile robots in dynamic environments – A linear algebra approach”, Robotica 27, 981997 (2009).Google Scholar
9. Cheein, F. A. and Scaglia, G. J. E., “Trajectory tracking controller design for unmanned vehicles: A new methodology,” J. Field Robot. doi:10.1002/rob.21492, (2013). http://onlinelibrary.wiley.com/doi/10.1002/rob.21492/abstract.Google Scholar
10. Rico, J. N., Alcala, I., Gomez-Ortega, J. and Camacho, E., “Mobile robot path tracking using PID controller,” Control Eng. Practice 9, 12091214 (2001).Google Scholar
11. Biber, P. and Duckett, T., “Dynamic Maps for Long-Term Operation of Mobile Service Robots,” Proceedings of Robotics: Science and Systems, MIT Press, Cambridge, MA (Jun. 8–11, 2005) pp. 1724.Google Scholar
12. Cheein, F. A. Auat and Carelli, R., “Analysis of different feature selection criteria based on a covariance convergence perspective for a SLAM algorithm,” Sensors (Basel) 11 (1) 6289 (2011).Google Scholar
13. Cheein, F. A. Auat, di Sciascio, F., Scaglia, G. J. E. and Carelli, R., “Towards features updating selection based on the covariance matrix of the SLAM system state,” Robotica (Cambridge) 29 (2), 271282 (2010).Google Scholar
14. Cheein, F. Auat, De la Cruz, C., Carelli, R. and Bastos, T., “Navegacion Autonoma Asistida basada en SLAM para una Silla de Ruedas Robotizada en Entornos Restringidos,” Revista Ibero Americana de Automatica e Informatica Industrial 8 (2), 8192 (2011).Google Scholar
15. Dong-Shu, W. and Hua-Fang, Y., “Path Planning of Mobile Robot in Dynamic Environments,” Proceedings of the International Conference on Intelligent Control and Information Processing (ICICIP), (Jul. 25–28, 2011) pp. 691–696.Google Scholar
16. Agarwal, R., Difference Equations and Inequalities, Theory, Methods, and Applications (Marcel Dekker, Inc., New York, 2000).Google Scholar
17. Omojokun, E. O., Trust Region Algorithms for Optimization with Nonlinear Equality and Inequality Constraints Ph.D. Thesis (Boulder, CO: University of Colorado Boulder, 1989).Google Scholar
18. Bazaraa, M. S., Sherali, H. D. and Shetty, C. M., Nonlinear Programming Theory and Algorithms, (John Wiley & Sons, Inc., Hoboken, NJ, 2006) 872 pp.Google Scholar
19. Jung, S., Jeon, P. and Hsia, T. C., “Contour tracking of an unknown planar object by regulating force for mobile robot navigation,” Robotica 25, 297305 (2007).Google Scholar
20. Toibero, J. M., Roberti, F. and Carelli, R., “Stable contour-following control of wheeled mobile robots,” Robotica 27, 112 (2009).Google Scholar
21. Roth, S. and Batavia, P., “Evaluating path tracker performance for outdoor mobile robots,” Automation Technology for Off-Road Equipment, July, 2002. Retrieved on December 4, 2012, from http://www.ri.cmu.edu/publication_view.html?pub_id=3908.Google Scholar
22. Rico, J. N., Gomez-Ortega, J. and Camacho, E., “A Smith predictor based generalized predictive controller for mobile robot path-tracking,” Control Eng. Pract. 7, 729740 (1999).Google Scholar