Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T22:08:21.107Z Has data issue: false hasContentIssue false

Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator

Published online by Cambridge University Press:  10 September 2014

Ryan James Caverly*
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
David Evan Zlotnik
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
James Richard Forbes
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA
*
*Corresponding author. E-mail: [email protected]

Summary

In this paper the control of flexible-joint manipulators while explicitly avoiding actuator saturation is considered. The controllers investigated are composed of a bounded proportional control term and a Hammerstein strictly positive real angular rate control term. This control structure ensures that the total torque demanded of each actuator is bounded by a value that is less than the maximum torque that each actuator is able to provide, thereby disallowing actuator saturation. The proposed controllers are shown to render the closed-loop system asymptotically stable, even in the presence of modeling uncertainties. The performance of the controllers is demonstrated experimentally and in simulation.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eppinger, S. D. and Seering, W. P., “Three dynamic problems in robot force control,” IEEE Trans. Robot. Autom. 8 (6), 751758 (1992).Google Scholar
2.Rivin, E. I., Mechanical Design of Robots (Mcgraw-Hill, 1987).Google Scholar
3.Ortega, R., Kelly, R. and Loría, A., “A class of output feedback globally stabilizing controllers for flexible joints robots,” IEEE Trans. Robot. Autom. 11 (5), 766770 (1995).Google Scholar
4.Ulrich, S. and Sasiadek, J. Z., “Modeling and direct adaptive control of a flexible-joint manipulator,” J. Guid. Control Dyn. 35 (1), 2539 (2012).Google Scholar
5.Tomei, P., “A simple PD controller for robots with elastic joints,” IEEE Trans. Autom. Control 36 (20), 12081213 (1991).Google Scholar
6.Ortega, R., Loría, A., Nicklasson, P. J. and Sira-Ramirez, H. J., Passivity-Based Control of Euler-Lagrange Systems (Springer, 1998).Google Scholar
7.Spong, M. W., “Modeling and control of elastic joint robots,” J. Dyn. Syst. Meas. Control 109 (4), 310319 (1987).Google Scholar
8.Caverly, R. J., Zlotnik, D. E., Bridgeman, L. J. and Forbes, J. R., “Saturated proportional derivative control of flexible-joint manipulators,” Robot. Comput.-Integr. Manuf. 30 (6), 658666 (2014).Google Scholar
9.Aldu-Schäffer, A., Ott, C. and Hirzinger, G., “A unified passivity-based framework for position, torque and impedance control of flexible joint robots,” Int. J. Robot. Res. 26 (1), 2339 (2007).CrossRefGoogle Scholar
10.Dixon, W. E., Zergeroglu, E., Dawson, D. M. and Hannan, M. W., “Global adaptive partial state feedback tracking control of rigid-link flexible-joint robots,” Robotica 18 (3), 324336 (2000).CrossRefGoogle Scholar
11.Lozano, R. and Brogliato, B., “Adaptive control of robot manipulators with flexible joints,” IEEE Trans. Autom. Control 37 (2), 174181 (1992).Google Scholar
12.Spong, M. W., Khorasani, K. and Kokotovic, P. V., “An integral manifold approach to the feedback control of flexible joint robots,” IEEE J. Robot. Autom. 3 (4), 291300 (1987).Google Scholar
13.Macnab, C. J. B. and D'Eleuterio, G. M. T., “Neuroadaptive control of elastic-joint robots using robust performance enhancement,” Robotica 19 (6), 619629 (2001).Google Scholar
14.Ailon, A. and Ortega, R., “An observer-based set-point controller for robot manipulators with flexible joints,” Syst. Control Lett. 21, 329335 (1993).Google Scholar
15.Bernstein, D. S. and Michel, A. N., “A chronological bibliography on saturating actuators,” Int. J. Robust Nonlinear Control 5, 375380 (1995).Google Scholar
16.Liu, H., Zhu, S. and Chen, Z., “Saturated output feedback tracking control for robot manipulators via fuzzy self-tuning,” J. Zhejiang Univ. Sci. C (Comput. Electron.) 11 (12), 956966 (2010).Google Scholar
17.Moreno-Valenzuela, J. and Santibáñez, V., “Robust saturated PI joint velocity control for robot manipulators,” Asian J. Control 15 (1), 6479 (2013).Google Scholar
18.Arai, H., Tanie, K. and Tachi, S., “Path tracking control of a manipulator considering torque saturation,” IEEE Trans. Ind. Electron. 41 (1), 2531 (1994).Google Scholar
19.Hernández-Guzmán, V. M., Santibanez, V. and Zavala-Río, A., “A saturated PD controller for robots equipped with brushless DC-motors,” Robotica 28 (3), 405411 (2009).Google Scholar
20.Bernstein, D. S. and Haddad, W. M., “Nonlinear controllers for positive real systems with arbitrary input nonlinearities,” IEEE Trans. Autom. Control 39 (7), 15131517 (1994).Google Scholar
21.Haddad, W. M. and Chellaboina, V., “Nonlinear control of Hammerstein systems with passive nonlinear dynamics,” IEEE Trans. Autom. Control 46 (10), 16301634 (2001).CrossRefGoogle Scholar
22.Benhabib, R. J., Iwens, R. P. and Jackson, R. L., “Stability of large space structure control systems using positivity concepts,” J. Guid. Control 4, 487494 (Sept.–Oct. 1981).Google Scholar
23.Hughes, P. C., Spacecraft Attitude Dynamics, 2nd ed. (Mineola, New York, Dover, 2004).Google Scholar
24.Marquez, H., Nonlinear Control Systems (Hoboken, NJ, John Wiley and Sons, Inc., 2003).Google Scholar
25.Spong, M. W., Hutchinson, S. and Vidyasagar, M., Robot Modeling and Control, 1st ed. (Wiley, 2005).Google Scholar
26.Su, Y. and Zheng, C., “Globally asymptotic stabilization of spacecraft with simple saturated proportional-derivative control,” J. Guid. Control Dyn. 34 (6), 19321935 (2011).Google Scholar
27.Bhat, S. P. and Bernstein, D. S., “A topological obstruction to continuous globabl stabilization of rotational motion and the unwinding phenomenon,” Syst. Control Lett. 39, 6370 (2000).Google Scholar
28.Lee, T., “Exponential stability of an attitude tracking control system on SO(3) for large-angle rotation maneuvers,” Syst. Control Lett. 61 231–237 (2012).Google Scholar
29.Egeland, O. and Godhavn, J. M., “Passivity-based adaptive attitude control of a rigid spacecraft,” IEEE Trans. Autom. Control 39 (4), 842846 (1994).Google Scholar
30.Damaren, C. J., “Gain scheduled SPR controllers for nonlinear flexible systems,” J. Dyn. Syst. Meas. Control 118 (4), 698703 (1996).Google Scholar
31.Lanari, L. and Wen, J. T., “Asymptotically stable set point control laws for flexible robots,” Syst. Control Lett. 19, 119129 (1992).Google Scholar
32.Slotine, J. J. E. and Li, W., Applied Nonlinear Control (New Jersey, Prentice-Hall, 1991).Google Scholar
33. Quanser Consulting Inc., 2011. Quanser Rotary Servo User Manual.Google Scholar