Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:15:00.036Z Has data issue: false hasContentIssue false

Robot force control without dynamic model: theory and experiments

Published online by Cambridge University Press:  20 April 2012

Juan C. Rivera-Dueñas
Affiliation:
Universidad Nacional Autónoma de México, México, D. F., 04510, México
Marco A. Arteaga-Pérez*
Affiliation:
Universidad Nacional Autónoma de México, México, D. F., 04510, México
*
*Corresponding author. E-mail: [email protected]

Summary

Among the many challenges to deal with, when a robot is interacting with its environment, friction at the contact surface and/or at the joints is one of the most important to be considered. In this paper we propose a control algorithm for the tracking of position and force (unconstrained orientation case only) of a manipulator end-effector that does not require the robot model for implementation. This characteristic has the advantage of making it capable to compensate friction effects without any previous estimation. Furthermore, no velocity measurements are needed, and the unit quaternion is employed for orientation control. Experimental and simulation results are provided.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zeng, G. and Hemami, A., “An overview of robot force control,” Robotica 15, 473482 (1997).CrossRefGoogle Scholar
2.Siciliano, B. and Villani, L., Robot Force Control (Kluwer, The Netherlands, 1999).CrossRefGoogle Scholar
3.Yoshikawa, T., “Force Control of Robot Manipulators,” In: Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, USA (April 2000) pp. 220226.Google Scholar
4.Sciavicco, L. and Siciliano, B., Modeling and Control of Robot Manipulators, 2nd ed. (Springer–Verlag, London, UK, 2000).CrossRefGoogle Scholar
5.Liu, Y. H. and Arimoto, S., “Implicit and Explicit Force Controllers for Rheo–Holonomically Constrained Manipulators and Their Extension to Distributed Cooperation Control,” In: IFAC 13th Triennial World Congress, San Francisco, CA, USA (1996) pp. 618623.Google Scholar
6.de Queiroz, M. S., Dawson, D. M. and Burg, T., “Position/Force Control of Robot Manipulators Without Velocity/Force Measurements,” In: Proceedings of the IEEE Conference on Robotics and Automation, vol. 3, Minneapolis, MN, USA (April 1996) pp. 25612566.CrossRefGoogle Scholar
7.Martínez-Rosas, J. C., Arteaga-Pérez, M. A. and Castillo-Sánchez, A. M., “Decentralized control of cooperative robots without velocity-force measurements,” Automatica 42, 329336 (2006).CrossRefGoogle Scholar
8.Canudas de Wit, C., Olsson, H., Åström, K. J. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans. Autom. Control 40 (3), 419425 (1995).CrossRefGoogle Scholar
9.Garcia, E., Gonzalez de Santos, P. and Canudas de Wit, C., “Velocity dependence in the cyclic friction arising with gears,” Int. J. Robot. Res. 21 (9), 761771 (2002).CrossRefGoogle Scholar
10.Arteaga-Pérez, M. A. and Rivera-Dueñas, J. C., “Force Control Without Inverse Kinematics nor Robot Model,” In: Proceedings of the CD ROM, European Control Conference ECC07, Kos Island, Greece (July 2007) pp. 43854392.Google Scholar
11.Parra-Vega, V., Rodríguez-Ángeles, A., Arimoto, S. and Hirzinger, G., “High precision constrained grasping with cooperative adaptive hand control,” J Intell. Robot. Syst. 32, 235254 (2001).CrossRefGoogle Scholar
12.Arteaga-Pérez, M. A., Castillo-Sánchez, A. M. and Parra-Vega, V., “Cartesian control of robots without dynamic model and observer design,” Automatica 42, 473480 (2006).CrossRefGoogle Scholar
13.Khalil, H. K., Nonlinear Systems, 3rd ed. (Prentice-Hall, Upper Saddle River, NJ, 2002).Google Scholar
14.Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation(CRC Press, Boca Raton, FL, 1994).Google Scholar
15.Jung, S. and Hsia, T. C., “Reference Compensation Technique of Neural Force Tracking Impedance Control for Robot Manipulators,” In: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China (Jul. 7–9, 2010) pp. 650655.Google Scholar
16.Cheah, C. C., Hou, S. P., Zhao, Y. and Slotine, J.-J. E., “Adaptive Vision and Force Tracking Control for Robots with Constraint Uncertainty,” IEEE/ASME Trans. Mechatronics 15 (3), 389398 (2010).CrossRefGoogle Scholar
17.Martínez-Rosas, J. C., “Identificación Paramétrica de un Robot Industrial con Diferentes Esquemas de Control Adaptable,” Master's Degree Thesis (Universidad Veracruzana, Instituto de Ingeniería, Veracruz, Veracruz, Mexico, 2002).Google Scholar
18.Gudiño-Lau, J. and Arteaga-Pérez, M. A., “Dynamic model and simulation of cooperative robots: A case study,” Robotica 23, 615624 (2005).CrossRefGoogle Scholar
19.Castillo Sánchez, A. M., “Adaptación de Dos Robots Industriales Para su Utilización en el Desarrollo de Nuevas Técnicas y Algoritmos de Control,” Bachelor's Degree Thesis (ENEP, Universidad Nacional Autónoma de México, Mexico, 2002).Google Scholar