Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T02:30:03.622Z Has data issue: false hasContentIssue false

Pythagorean-Hodograph curves-based trajectory planning for pick-and-place operation of Delta robot with prescribed pick and place heights

Published online by Cambridge University Press:  26 January 2023

Tingting Su
Affiliation:
Beijing Institute of Artificial Inteligence, Beijing University of Technology, Beijing, China
Xu Liang*
Affiliation:
Department of Mechanical and Electrical Engineering, North China University of Technology, Beijing, China
Xiang Zeng
Affiliation:
Department of Mechanical and Electrical Engineering, North China University of Technology, Beijing, China
Shengda Liu
Affiliation:
State Key Laboratory of Management and Control for Complex Systems, CInstitute of Automation, Chinese Academy of Sciences, Beijing, China
*
*Corresponding author. E-mail: [email protected]

Abstract

In this paper, a Pythagorean-Hodograph (PH) curve-based pick-and-place operation trajectory planning method for Delta parallel robots is proposed, which realizes the flexible control of pick-and-place operations to meet the requirements of various practical scenarios. First, according to the geometric relationship of pick-and-place operation path, different pick-and-place operations are classified. Then trajectory planning is carried out for different situations, respectively, and in each case, the different polynomial motion laws adopted by the linear motion segment and the curved motion segment are solved. Trajectory optimization is performed with the motion period as optimization objective. The proposed method is easier to implement, and at the same time satisfies the safety, optimization, mobility, and stability of the robot; that is, the proposed method realizes obstacle avoidance, optimal time, flexible control of the robot trajectory, and stable motion. Simulations and experiments verify the effectiveness of the method proposed in this paper. The proposed method can not only realize the fast, accurate, and safe operation in intelligent manufacturing fields such as rapid classification, palletizing, grasping, warehousing, etc., but its research route can also provide a reference for trajectory planning of intelligent vehicles in logistics system.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eskandary, P. K., Belzile, B. and Angeles, J., “Trajectory-planning and normalized-variable control for parallel pick-and-place robots,” J. Mechan. Robot 11(3), 031001 (2019).CrossRefGoogle Scholar
Yang, X., Zhu, L. M., Ni, Y., Liu, H. and Huang, T., “Modified robust dynamic control for a diamond parallel robot,” IEEE/ASME Trans. Mechatron. 24(3), 959968 (2019).CrossRefGoogle Scholar
Kelaiaia, R., “Improving the pose accuracy of the delta robot in machining operations,” Int. J. Adv. Manuf. Technol. 91(5–8), 22052215 (2017).CrossRefGoogle Scholar
Su, T., Cheng, L., Wang, Y., Liang, X., Zheng, J. and Zhang, H., “Time-optimal trajectory planning for delta robot based on quintic pythagorean-hodograph curves,” IEEE Access 6, 2853028539 (2018).CrossRefGoogle Scholar
Okunevich, I., Trinitatova, D., Kopanev, P. and Tsetserukou, D., “DeltaCharger: charging robot with inverted delta mechanism and CNN-driven high fidelity tactile perception for precise 3D positioning,” IEEE Robot. Automat. Lett. 6(4), 76047610 (2021).CrossRefGoogle Scholar
Wu, E. Q., Lin, C. T., Zhu, L. M., Tang, Z. R., Jie, Y. W. and Zhou, G. R., “Fatigue detection of pilots’ brain through brains cognitive map and multilayer latent incremental learning model,” IEEE Trans. Cybern. 52(11), 1230212314 (2022). doi: 10.1109/TCYB.2021.3068300.CrossRefGoogle ScholarPubMed
Chen, C. T. and Liao, T. T., “A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators,” Robot. Comput. Integr. Manuf. 27(1), 7281 (2011).CrossRefGoogle Scholar
Schreiber, L. T. and Gosselin, C., “Kinematically redundant planar parallel mechanisms: kinematics, workspace and trajectory planning,” Mech. Mach. Theory 1191, 91105 (2018).CrossRefGoogle Scholar
Kucuk, S., “Optimal trajectory generation algorithm for serial and parallel manipulators,” Robot. Comput. Integr. Manuf. 48, 219232 (2017).CrossRefGoogle Scholar
Zhang, N., Shang, W. and Cong, S., “Geometry-based trajectory planning of a 3-3 cable-suspended parallel robot,” IEEE Trans. Robot 33(2), 484491 (2017).CrossRefGoogle Scholar
Qian, S., Bao, K., Zi, B. and Zhu, W. D., “Dynamic trajectory planning for a three degrees-of-freedom cable-driven parallel robot using quintic B-splines,” J. Mech. Des. 142(7), 073301 (2020).CrossRefGoogle Scholar
Savsani, P., Jhala, R. L. and Savsani, V. J., “Comparative study of different metaheuristics for the trajectory planning of a robotic arm,” IEEE Sys. J. 10(2), 697708 (2016).CrossRefGoogle Scholar
Gasparetto, A., Lanzutti, A., Vidoni, R. and Zanotto, V., “Validation of minimum time-jerk algorithms for trajectory planning of industrial robots,” J. Mech. Robot. 3(3), 031003 (2011).CrossRefGoogle Scholar
Li, B. and Shao, Z., “Simultaneous dynamic optimization: A trajectory planning method for nonholonomic car-like robots,” Adv. Eng. Softw. 87, 3042 (2015).CrossRefGoogle Scholar
Bourbonnais, F., Bigras, P. and Bonev, I. A., “Minimum-time trajectory planning and control of a pick-and-place five-bar parallel robot,” IEEE/ASME Trans. Mechatron. 20(2), 740749 (2015).CrossRefGoogle Scholar
Pham, Q. and Stasse, O., “Time-optimal path parameterization for redundantly actuated robots: a numerical integration approach,” IEEE/ASME Trans Mechatron. 20(6), 32573263 (2015).CrossRefGoogle Scholar
Zimmermann, S., Hakimifard, G., Zamora, M., Poranne, R. and Coros, S., “A multi-level optimization framework for simultaneous grasping and motion planning,” IEEE Robot. Automat. Lett. 5(2), 29662972 (2020).CrossRefGoogle Scholar
Sun, J., Han, X., Zuo, Y., Tian, S., Song, J. and Li, S., “Trajectory planning in joint space for a pointing mechanism based on a novel hybrid interpolation algorithm and NSGA-II algorithm,” IEEE Access 8, 228628228638 (2020).CrossRefGoogle Scholar
Liu, C., Cao, G. H., Qu, Y. Y. and Cheng, Y. M., “An improved PSO algorithm for time-optimal trajectory planning of delta robot in intelligent packaging,” Int. J. Adv. Manuf. Technol. 107(3), 10911099 (2020).CrossRefGoogle Scholar
Borchert, G., Battistelli, M., Runge, G. and Raatz, A., “Analysis of the mass distribution of a functionally extended delta robot,” Robot. Comput. Integr. Manuf. 31, 111120 (2015).CrossRefGoogle Scholar
Moghaddam, M. and Nof, S. Y., “Parallelism of pick-and-place operations by multi-gripper robotic arms,” Robot. Comput. Integr. Manuf. 42, 135146 (2016).CrossRefGoogle Scholar
Choe, R., Puignavarro, J., Cichella, V., Xargay, E. and Hovakimyan, N., “Cooperative trajectory generation using pythagorean hodograph bezier curves,” J. Guid. Contr. Dyn. 39(8), 17441763 (2016).CrossRefGoogle Scholar
Liang, X. and Su, T., “Quintic pythagorean-hodograph curves based trajectory planning for delta robot with a prescribed geometrical constraint,” Appl. Sci. 9(21), 4491 (2019).CrossRefGoogle Scholar
Suzuki, T., Usami, R. and Maekawa, T., “Automatic two-lane path generation for autonomous vehicles using quartic B-spline curves,” IEEE Trans. Intell. Veh. 3(4), 547558 (2018).CrossRefGoogle Scholar
Hoek, R. V., Ploeg, J. and Nijmeijer, H., “Cooperative driving of automated vehicles using B-splines for trajectory planning,” IEEE Trans. Intell. Veh. 6(3), 594604 (2021).Google Scholar
Dong, B. and Farouki, R. T., “Algorithm 952: PHquintic: a library of basic functions for the construction and analysis of planar quintic pythagorean-hodograph curves,” ACM Trans. Math. Softw. 41(4), 28–20 (2015).CrossRefGoogle Scholar
Shao, Z., Yan, F., Zhou, Z. and Zhu, X. P., “Path planning for multi-UAV formation rendezvous based on distributed cooperative particle swarm optimization,” Appl. Sci. 9(13), 2621 (2019).CrossRefGoogle Scholar
Singh, I., Amara, Y., Melingui, A., Pathak, P. M. and Merzouki, R., “Modeling of continuum manipulators using pythagorean hodograph curves,” Soft Robot. 5(4), 425442 (2018).CrossRefGoogle ScholarPubMed
Zheng, Z. H., Wang, G. Z. and Yang, P., “On control polygons of pythagorean hodograph septic curves,” J. Comput. Appl. Math. 296, 212227 (2016).CrossRefGoogle Scholar
Giannelli, C., Mugnaini, D. and Sestini, A., “Path planning with obstacle avoidance by G1 PH quintic splines,” Comput. Aid. Des. 75-76, 4760 (2016).CrossRefGoogle Scholar
Moon, H. P. and Farouki, R. T., “C1 and C2 interpolation of orientation data along spatial pythagorean-hodograph curves using rational adapted spline frames,” Comput. Aid. Geomet. Des. 66, 115 (2018).CrossRefGoogle Scholar
Huang, T., Wang, P. F., Mei, J. P., Zhao, X. M. and Chetwynd, D. G., “Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations,” CIRP Ann. 56(1), 365368 (2007).CrossRefGoogle Scholar