Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:52:23.787Z Has data issue: false hasContentIssue false

PD-like controller with impedance for delayed bilateral teleoperation of mobile robots

Published online by Cambridge University Press:  15 April 2015

E. Slawiñski*
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (Oeste), J5400ARL San Juan, Argentina
S. García
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (Oeste), J5400ARL San Juan, Argentina
L. Salinas
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (Oeste), J5400ARL San Juan, Argentina
V. Mut
Affiliation:
Instituto de Automática (INAUT), Universidad Nacional de San Juan, Av. Libertador San Martín 1109 (Oeste), J5400ARL San Juan, Argentina
*
*Corresponding author. E-mail: [email protected]

Summary

This paper proposes a control scheme applied to the delayed bilateral teleoperation of mobile robots with force feedback in face of asymmetric and time-varying delays. The scheme is managed by a velocity PD-like control plus impedance and a force feedback based on damping and synchronization error. A fictitious force, depending on the robot motion and its environment, is used to avoid possible collisions. In addition, the stability of the system is analyzed from which simple conditions for the control parameters are established in order to assure stability. Finally, the performance of the delayed teleoperation system is shown through experiments where a human operator drives a mobile robot.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sheridan, T. B., Telerobotics, Automation, and Human Supervisory Control (MIT Press, Cambrige, MA, 1992).Google Scholar
2. Ferre, M., Buss, M., Aracil, R., Melchiorri, C. and Balaguer, C., Advances in Telerobotics (Springer-Verlag, Berlin, Germany, 2007).CrossRefGoogle Scholar
3. Hokayem, P. F. and Spong, M. W., “Bilateral teleoperation: An historical survey,” Automatica 42, 20352057 (2006).Google Scholar
4. Richard, J. P., “Time-delay systems: An overview of some recent advances and open problems,” Automatica 39, 16671694 (2003).CrossRefGoogle Scholar
5. Sheridan, T. B., “Space teleoperation through time delay: Review and prognosis,” IEEE Trans. Robot. Autom. 9 (5), 592606 (Oct. 1993).CrossRefGoogle Scholar
6. Lawrence, D. A., “Stability and transparency in bilateral teleoperation,” IEEE Trans. Robot. Autom. 9, 624637 (Oct. 1993).CrossRefGoogle Scholar
7. Anderson, R. J. and Spong, M., “Bilateral control of teleoperators with time delay,” IEEE Trans. Autom. Control 34 (5), 494501 (1989).Google Scholar
8. Niemeyer, G. and Slotine, J. J. E., “Stable adaptive teleoperation,” IEEE J. Ocean Eng. 16 (1), 152162 (1991).CrossRefGoogle Scholar
9. Niemeyer, G. and Slotine, J., “Telemanipulation with time delays,” Int. J. Robot. Res. 23 (9), 873890 (2004).CrossRefGoogle Scholar
10. Ryu, J. H., Artigas, J. and Preusche, C., “A passive bilateral control scheme for a teleoperator with time-varying communication delay,” Mechatronics 20 (7), 812823 (2010).CrossRefGoogle Scholar
11. Lee, D. and Spong, M., “Passive bilateral teleoperation with constant time delay,” IEEE Trans. Robot. 22 (2), 269281 (Apr. 2006).Google Scholar
12. Nuno, E., Ortega, R., Barabanov, N. and Basanez, L., “A globally stable PD controller for bilateral teleoperators,” IEEE Trans. Robot. 22 (3), 753758 (2008).Google Scholar
13. Hua, C.-C. and Liu, X. P., “Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays,” IEEE Trans. Robot. 26 (5), 925932 (Oct. 2010).CrossRefGoogle Scholar
14. Slawiñski, E. and Mut, V., “PD-like controllers for delayed bilateral teleoperation of manipulators robots,” Int. J. Robust Nonlinear Control (article first published online: Apr. 4, 2014), doi:10.1002/rnc.3177.Google Scholar
15. Slawinski, E., Mut, V. and Postigo, J. F., “Teleoperation of mobile robots with time-varying delay,” IEEE Trans. Robot. 23 (5), 10711082 (2007).Google Scholar
16. Xu, Z., Ma, L. and Schilling, K., “Passive Bilateral Teleoperation of a Car-Like Mobile Robot,” Proceedings of the 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece (Jun. 24–26, 2009) pp. 790–796.Google Scholar
17. Elhajj, I., Xi, N., Fung, W. K., Liu, Y.-H., Hasegawa, Y. and Fukuda, T., “Supermedia-enhanced internet-based telerobotics,” Proc. IEEE 91 (3), 396421 (Mar. 2003).Google Scholar
18. Slawiñski, E., Mut, V., Salinas, L. and García, S., “Teleoperation of a mobile robot with time-varying delay and force feedback,” Robotica 30, 6777 (2012).CrossRefGoogle Scholar
19. Farkhatdinov, I., Ryu, J.-H. and An, J., “A Preliminary Experimental Study on Haptic Teleoperation of Mobile Robot with Variable Force Feedback Gain,” Proceedings of the IEEE Haptics Symposium, Waltham, Boston, Massachusetts (Mar. 24–25, 2010) pp. 251–256.Google Scholar
20. Diolaiti, N. and Melchiorri, C., “Haptic Teleoperation of a Mobile Robot,” Proceedings of the 7th IFAC SYROCO, Wrocław, Poland (Sep. 1–3, 2003) pp. 2798–2805.Google Scholar
21. Janabi-Sharifi, F. and Hassanzadeh, I., “Experimental analysis of mobile robot teleoperation via shared impedance control,” IEEE Trans. Syst. Man Cybern. 41 (2), 591606 (Apr. 2011).Google Scholar
22. Lee, D., Martinez-Palafox, O. and Spong, M. W., “Bilateral Teleoperation of a Wheeled Mobile Robot over Delayed Communication Network,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, Florida, USA (May 15–19, 2006) pp. 3298–3303.Google Scholar
23. Lee, D. and Xu, D., “Feedback r-Passivity of Lagrangian Systems for Mobile Robot Teleoperation,” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China (May 9–13, 2011) pp. 2118–2123.Google Scholar
24. Quang, H. V., Farkhatdinov, I. and Ryu, J.-H., “Passivity of Delayed Bilateral Teleoperation of Mobile Robots with Ambiguous Causalities: Time Domain Passivity Approach,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal (Oct. 7–12, 2012) pp. 2635–2640.Google Scholar
25. Slawiñski, E., Mut, V., Fiorini, P. and Salinas, L., “Quantitative Absolute Transparency for Bilateral Teleoperation of Mobile Robots,” IEEE Trans. Syst. Man Cybern. 42 (2), 430442 (Mar. 2012).Google Scholar
26. Zhu, W.-H. and Salcudean, S., “Stability guaranteed teleoperation: An adaptive motion/force control approach,” IEEE Trans. Autom. Control 45 (11), 19511969 (Nov. 2000).Google Scholar
27. Shahdi, A. and Sirouspour, S., “Adaptive/robust control for time-delay teleoperation,” IEEE Trans. Robot. 25 (1), 196205 (Feb. 2009).Google Scholar