Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T22:12:51.972Z Has data issue: false hasContentIssue false

Parameter identification of a semi-flexible kinematic model for serial manipulators

Published online by Cambridge University Press:  09 March 2009

Richard Gourdeau
Affiliation:
Département de Mathématiques et de Génie Industriel, Ecole Polytechnique de Montréal, Montréal, Québec (Canada) H3C3A7
Guy M. Cloutier
Affiliation:
Département de Mathématiques et de Génie Industriel, Ecole Polytechnique de Montréal, Montréal, Québec (Canada) H3C3A7

Summary

Structural and control flexibilities affect the absolute precision of serial manipulators. A semi-flexible kinematic model is developed, to improve the absolute static precision. It expands the solid body model by incorporating a spring effect for each joint and a beam effect for each link. The identifiability of the added parameters and the effect of measurement noise are explored on a R4 robot. It requires efforts and pose errors to be known in the tool frame only. Simulation results show that identification of some of the parameters is sensitive to measurement noise on forces and pose. In fact, joint flexibility displacement and beam flexion that occur in the same plane are difficult to dissociate in noisy condition. However, a subset of the original parameters can be defined leading to a model that can be more accurately identified when measurement noise is present. In simulation, precompensation is used in an inverse semi-flexible model that results in a 98% decrease of pose error compared to the rigid body inverse geometric model.

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Everett, L.J. and Hsu, T.W., “The theory of kinematic parameter identification for industrial robotsASME J. of Dynamic Systems, Measurement, and Control 110, 96100 (03, 1988).CrossRefGoogle Scholar
2.Hayati, S.A., Tso, K. and Roston, G., “Robot geometry calibration” Proceedings of the IEEE Conference on Robotics and Automation (1988) pp. 947951.Google Scholar
3.Hsu, T.W. and Everett, L.J., “Identification of the kinematic parameters of a robot manipulator for positional accuracy improvement” ASME Conference on Computers in Engineering (1985) pp. 236267.Google Scholar
4.Stone, H.W., Kinematic Modeling, Identification and Control of Robotic Manipulators (Kluwer Academic Publishers, Amsterdam, 1987).CrossRefGoogle Scholar
5.Chen, J. and Chao, L.M., “Positioning error analysis for robot manipulators with all rotary joints” Proceedings of the IEEE Conference on Robotics and Automation (1986) pp. 10111016.Google Scholar
6.Judd, R.P. and Knasinski, A.B., “A technique to calibrate industrial robots with experimental verificationIEEE Trans, of Robotics and Automation 6, 1, 20301 (1990).CrossRefGoogle Scholar
7.Whitney, D.E., Lozinski, C.A. and Rourke, J.M., “Industrial robot forward calibration method and resultsASME J. Dynamic Systems, Measurement, and Control 108, 18 (03, 1986).CrossRefGoogle Scholar
8.Chang, L. and Hamilton, J.F., “Dynamics of robotic manipulators with flexible linksASME J. of Dynamic Systems, Measurement, and Control 113, 5459 (03, 1991).CrossRefGoogle Scholar
9.Chang, L. and Hamilton, J.F., “The kinematics of robotic manipulator with flexible links using an equivalent rigid link system ERLS modelASME J. of Dynamic Systems, Measurement, and Control 113, 4853 (03, 1991).CrossRefGoogle Scholar
10.Jonker, B., “A finite element dynamic analysis of flexible manipulatorsInt. J. Robotics Research 9, 4, 5974 (1990).CrossRefGoogle Scholar
11.Piedbouef, J., Hurteau, R. and Ziarati, K., “Logiciel de simulation et de commande pour les robots flexibles,” Conférence Canadienne et Exposition: Automatisation Industrielle (1992) pp. 13.13–13.17.Google Scholar
12.Denavit, J. and Hartenberg, R.S., “A kinematic notation for lower pair mechanisms based on matrices” ASME J. Applied Mechanics 215221 (06 1955).CrossRefGoogle Scholar
13.Zhuang, H., Roth, Z.S. and Hamano, F., “A complete and parameterically continuous kinematic model for robot manipulatorsIEEE Trans, of Robotics and Automation 8, No. 4, 451463 (1992).CrossRefGoogle Scholar
14.Tang, S.C. and Wang, C.C., “Computation of the effects of link deflections and joint compliance on robot positioning” Proceedings of the IEEE Conference on Robotics and Automation (1987) pp. 910915.Google Scholar
15.Meghdari, A., “A variational approach for modeling flexibilities effects in manipulator armsRobotica, 9, part 2, 213217 (1991).CrossRefGoogle Scholar
16.Caenen, J.L. and Angue, J.C., “Identification of geometric and non geometric parameters of robots” Proceedings of the IEEE Conference on Robotics and Automation (1990) pp. 10321037.Google Scholar
17.Cléroux, L., Gourdeau, R. and Cloutier, G.M., “A semi-flexible kinematic model for serial manipulatorsRobotica 13, part 4, 385395 (1995).CrossRefGoogle Scholar
18.Craig, J.J., Introduction to Robotics: Mechanics and Control (Addison-Wesley Publishing Company, 2nd ed., 1989).Google Scholar
19.Bazergui, A., Bui-Quoc, T., Biron, A., McIntyre, G. and Laberge, C., Résistance des matériaux (Éditions de l'École Polytechnique, de Montréal, 1987).Google Scholar
20.Dennis, J.E. Jr, “Nonlinear least squares” In: State of the Art in Numerical Analysis (Jacobs, D., ed.) (Academic Press, New York, 1977) pp. 269312.Google Scholar
21.Moré, J.J. “The levenberg-marquardt algorithm: implementation and theory” In: Numerical Analysis, (Watson, G.A., ed.) (Springer-Verlag, Berlin, 1977) pp. 105116.Google Scholar
22.Jeannier, P., Caractéristiques opératoires des robots d'assemblage. (Thèse de doctorat. Université Franche-Comté, Besançon, 1985).Google Scholar
23.Yao, J., “Accuracy improvement: modeling of elastic deflectionsRobotica 9, part 3, 327333 (1991).CrossRefGoogle Scholar