Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T04:31:30.607Z Has data issue: false hasContentIssue false

Numerical synthesis of three-dimensional gait cycles by dynamics optimization

Published online by Cambridge University Press:  07 July 2010

Tarik Saidouni*
Affiliation:
Laboratory of Structure Mechanics, Polytechnics Military School, BP 17 Bordj El Bahri 16046, Algiers, Algeria
*
*Corresponding author. E-mail: [email protected]

Summary

The present paper aims at generating three-dimensional cyclic gait of a biped with a locomotion system having anthropomorphic characteristics. Kinematic and dynamic models of both single and double support phases are extensively developed with a special attention devoted to the double support phase. A variety of gait constraints defining a feasible walk is taken into account. Joint trajectories are approximated by cubic spline functions connected at uniformly distributed knots. Joint coordinates at knots, walking phase durations, and independent parameters at phase transitions are the design parameters of a parametric optimization problem. Therefore, only the pattern organization and the gait speed are explicitly specified. The effectiveness of the proposed method is verified and discussed through some simulation results.

Type
Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Honda Motor Co. Ltd., Honda Public relations Division, USA, “ASIMO-Technical Information,” 1–34. (Sept. 2007). Available at http://asimo.honda.com/downloads/pdf/asimo-technical-information.pdfGoogle Scholar
2.Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G. and Akachi, K., “Humanoid Robot HRP-3,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France (2008) pp. 24712478.Google Scholar
3.Pfeiffer, F., “The TUM walking machines,” Phil. Trans. R. Soc. A 365, 109131 (2007).CrossRefGoogle ScholarPubMed
4.Hirai, K., Hirose, M., Haikawa, Y. and Takenaka, T., “The Development of Honda Humanoid Robot,” Proceedings of IEEE ICRA, Leuven, Belgium (1998) pp. 13211326.Google Scholar
5.Huang, Q., Kaneko, K., Yokoi, K., Kajita, S., Kotoku, T., Koyachi, N., Arai, H., Imamura, N., Komoriya, K. and Tanie, K., “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” Proceedings of IEEE ICRA, San Francisco, CA (2000) pp. 33463352.Google Scholar
6.Lim, H. and Takanishi, A., “Compensatory motion control for a biped walking robot,” Robotica 23, 111 (2005).CrossRefGoogle Scholar
7.Zhu, C. and Kawamura, A., “Walking Principle Analysis for Biped Robot with ZMP Concept, Friction Constraint, and Inverted Pendulum Model,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV (2003) pp. 364369.Google Scholar
8.Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., Akachi, K., Kawasaki, T., Ota, S., Yokoyama, K., Handa, H., Fukase, Y., Maeda, J., Nakamura, Y., Tachi, S. and Inoue, H., “Humanoid robotics platforms developed in HRP,” Robot. Auton. Syst. 48, 165175 (2004).CrossRefGoogle Scholar
9.McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9 (2), 6268 (1990).CrossRefGoogle Scholar
10.Collins, S., Ruina, A., Tedrake, R. and Wisse, M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307, 10821085 (2005).CrossRefGoogle ScholarPubMed
11.Pandy, M. G. and Anderson, F. C., “Dynamic Simulation of Human Movement using Large-Scale Models of the Body,” Proceedings of IEEE ICRA, San Francisco, CA (2000) pp. 676681.Google Scholar
12.Channon, P. H., Hopkins, S. H. and Pham, D.T., “Derivation of optimal walking motions for bipedal walking robot,” Robotica 10, 165172 (1992).CrossRefGoogle Scholar
13.Chevallerau, C. and Aoustin, Y., “Optimal reference trajectories for walking and running of a biped robot,” Robotica 19, 557569 (2001).CrossRefGoogle Scholar
14.Rostami, M. and Bessonnet, G., “Sagittal gait of a biped robot during the single support phase. Part 2. Optimal motion,” Robotica 19, 241253 (2001).CrossRefGoogle Scholar
15.Saidouni, T. and Bessonnet, G., “Generating globally optimized sagittal gait cycles of a biped robot,” Robotica 21, 199210 (2003).CrossRefGoogle Scholar
16.Espiau, B. and Sardain, P., “The Anthropomorphic Biped BIP2000,” Proceedings of IEEE ICRA, San Francisco, CA (2000) pp. 39974002.Google Scholar
17.Saidouni, T. and Bessonnet, G., “Generating impactless gait of a bipedal robot,” Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China (2004) pp. 15321536.Google Scholar
18.Bessonnet, G., Seguin, P. and Sardain, P., “A parametric optimization approach to walking pattern synthesis,” Int. J. Robot. Res. 24 (7), 523536 (2005).CrossRefGoogle Scholar
19.Saidouni, T. and Bessonnet, G., “A Simplified Method for Generating 3D Gait Using Optimal Sagittal Gait,” ROMANSY 16, Proceedings of the 16th CISM-IFToMM Symposium, Warsaw, Poland (2006) pp. 195202.Google Scholar
20.Kim, H. J., Wang, Q., Rahmatalla, S., Swan, C. C., Arora, J. S., Abdel-Malek, K. and Assouline, J. G., “Dynamic motion planning of 3D human locomotion using gradient-based optimization,” ASME J. Biomech. Eng. 130, 031002-1–031002-14 (2008).CrossRefGoogle ScholarPubMed
21.Denk, J. and Schmidt, G., “Synthesis of Walking Primitive Databases for Biped Robots in 3D-Environments,” Proceedings of IEEE ICRA, Taipei, Taiwan (2003) pp. 13431349.Google Scholar
22.Buss, M., Hardt, M., Kiener, J., Sobotka, M., Stelzer, M., Von Stryk, O. and Wollherr, D., “Towards an Autonomous, Humanoid, and Dynamically Walking Robot: Modeling, Optimal Trajectory Planning, Hardware Architecture, and Experiments,” Third International Conference on Humanoid Robots, Karlsruhe, Germany (2003).Google Scholar
23.Von Stryk, O., User's Guide for DIRCOL Version 2.1, Simulation and Systems Optimization Group, Technische Universität Darmstadt, [Online]. http://www.sim.informatik.tu-darmstadt.de/sw/dircol (2010).Google Scholar
24.Khalil, W. and Kleinfinger, J. F., “A New Geometric Notation for Open and Closed-loop Robots,” Proceedings of IEEE ICRA, San Francisco, CA (1986) pp. 11741179.Google Scholar
25.Luh, J. Y. S., Walker, M. W. and Paul, R., “On-line computational scheme for mechanical manipulators,” ASME J. Dyn. Syst. Meas. Control 102 (2), 6976 (1980).CrossRefGoogle Scholar
26.Khalil, W., Kleinfinger, J. F. and Gautier, M., “Reducing the Computational Burden of the Dynamical Models of Robots,” Proceedings of IEEE ICRA, San Francisco, CA (1986) pp. 525531.Google Scholar
27.Nahon, M., “A comparison of methods for the control of redundantly-actuated robotic systems,” J. Intell. Robot. Syst. 14, 320 (1995).CrossRefGoogle Scholar
28.Chaudhary, H. and Saha, S. K., Dynamics and Balancing of Multibody Systems (Springer-Verlag, Berlin, 2009).CrossRefGoogle Scholar
29.Shabana, A. A., Dynamics of Multibody Systems, 3rd ed. (Cambridge University Press, New York, 2005).CrossRefGoogle Scholar
30.Angeles, J., Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms, 2nd ed. (Springer-Verlag, New York, 2003).CrossRefGoogle Scholar
31.Strang, G., Linear Algebra and its Applications, 2nd ed. (Academic Press, London, 1980).Google Scholar
32.Vukobratovic, M. and Borovac, B., “Zero-Moment Point–Thirty five years of it life,” Int. Humanoid Robot. 1 (1), 157173 (2004).CrossRefGoogle Scholar
33.Saidouni, T. and Bessonnet, G., “Gait Trajectory Optimization Using Approximation Functions,” Proceedings of the 5th International Conference on Climbing and Walking Robots, Paris, France (2002) pp. 709716.Google Scholar
34.Fletcher, R., Practical Methods of Optimization, 2nd ed. (John Wiley and Sons, Chichester and New York, 1987).Google Scholar
35.Lohmeier, S., Buschmann, T., Ulbrich, H. and Pfeiffer, F., “Modular Joint Design for Performance Enhanced Humanoid Robot LOLA,” Proceedings of IEEE ICRA, Orlando, FL (2006) pp. 8893.Google Scholar
36.McMahon, T. A., “Mechanics of locomotion,” Int. J. Robot. Res. 3 (2), 428 (1984).CrossRefGoogle Scholar