Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T10:52:15.808Z Has data issue: false hasContentIssue false

Experimental results for output feedback adaptive robot control

Published online by Cambridge University Press:  08 August 2006

John M. Daly
Affiliation:
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada
Howard M. Schwartz
Affiliation:
Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada

Abstract

This paper examines three methods of adaptive output feedback control for robotic manipulators. Implementing output feedback control allows use of only the position information, which can be measured quite accurately. Velocity and acceleration measurements can get corrupted by noise. A method proposed by K. W. Lee and H. K. Khalil [Adaptive output feedback control of robot manipulators using high-gain observer, Int. J. Control, 6, 869–886 (1997)] using a high-gain observer, one proposed by J. J. Craig, P. Hsu and S. S. Sastry [Adaptive control of mechanical manipulators, Int. J. Robot. Res., 6(2), 16–27 (1987)] with the addition of a linear observer that we propose, and a method proposed by R. Gourdeau and H. M. Schwartz [Adaptive control of robotic manipulators: Experimental results, Proceedings of the 1991 IEEE International Conference on Robotics and Automation (Apr. 1991) pp. 8–15] using an Extended Kalman Filter are examined. The methods are implemented in simulation and experimentally on a direct-drive robot. The performance of each of the algorithms is compared.

Type
Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)