Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Barabás, Orsolya
Rumlová, Michaela
Erdei, Anna
Pongrácz, Veronika
Pichová, Iva
and
Vértessy, Beáta G.
2003.
dUTPase and Nucleocapsid Polypeptides of the Mason-Pfizer Monkey Virus Form a Fusion Protein in the Virion with Homotrimeric Organization and Low Catalytic Efficiency.
Journal of Biological Chemistry,
Vol. 278,
Issue. 40,
p.
38803.
PLANT, EWAN P.
JACOBS, KRISTI L. MULDOON
HARGER, JASON W.
MESKAUSKAS, ARTURAS
JACOBS, JONATHAN L.
BAXTER, JENNIFER L.
PETROV, ALEXEY N.
and
DINMAN, JONATHAN D.
2003.
The 9-Å solution: How mRNA pseudoknots promote efficient programmed −1 ribosomal frameshifting.
RNA,
Vol. 9,
Issue. 2,
p.
168.
Baril, Martin
Dulude, Dominic
Steinberg, Sergey V
and
Brakier-Gingras, Léa
2003.
The Frameshift Stimulatory Signal of Human Immunodeficiency Virus Type 1 Group O is a Pseudoknot.
Journal of Molecular Biology,
Vol. 331,
Issue. 3,
p.
571.
Chen, Chaoping
and
Montelaro, Ronald C.
2003.
Characterization of RNA Elements That Regulate Gag-Pol Ribosomal Frameshifting in Equine Infectious Anemia Virus.
Journal of Virology,
Vol. 77,
Issue. 19,
p.
10280.
HOWARD, MICHAEL T.
GESTELAND, RAYMOND F.
and
ATKINS, JOHN F.
2004.
Efficient stimulation of site-specific ribosome frameshifting by antisense oligonucleotides.
RNA,
Vol. 10,
Issue. 10,
p.
1653.
Ivanov, Ivaylo P
Anderson, Christine B
Gesteland, Raymond F
and
Atkins, John F
2004.
Identification of a New Antizyme mRNA +1 Frameshifting Stimulatory Pseudoknot in a Subset of Diverse Invertebrates and its Apparent Absence in Intermediate Species.
Journal of Molecular Biology,
Vol. 339,
Issue. 3,
p.
495.
Cornish, Peter V.
Hennig, Mirko
and
Giedroc, David P.
2005.
A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated –1 ribosomal frameshifting.
Proceedings of the National Academy of Sciences,
Vol. 102,
Issue. 36,
p.
12694.
Yingling, Yaroslava G.
and
Shapiro, Bruce A.
2006.
The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation.
Journal of Molecular Graphics and Modelling,
Vol. 25,
Issue. 2,
p.
261.
Henderson, Clark M.
Anderson, Christine B.
and
Howard, Michael T.
2006.
Antisense-induced ribosomal frameshifting.
Nucleic Acids Research,
Vol. 34,
Issue. 15,
p.
4302.
Cornish, Peter V.
Stammler, Suzanne N.
and
Giedroc, David P.
2006.
The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical.
RNA,
Vol. 12,
Issue. 11,
p.
1959.
Brierley, Ian
Pennell, Simon
and
Gilbert, Robert J. C.
2007.
Viral RNA pseudoknots: versatile motifs in gene expression and replication.
Nature Reviews Microbiology,
Vol. 5,
Issue. 8,
p.
598.
Pennell, Simon
Manktelow, Emily
Flatt, Andrew
Kelly, Geoff
Smerdon, Stephen J.
and
Brierley, Ian
2008.
The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element.
RNA,
Vol. 14,
Issue. 7,
p.
1366.
Kierzek, Elzbieta
Christensen, Shawn M.
Eickbush, Thomas H.
Kierzek, Ryszard
Turner, Douglas H.
and
Moss, Walter N.
2009.
Secondary Structures for 5′ Regions of R2 Retrotransposon RNAs Reveal a Novel Conserved Pseudoknot and Regions that Evolve under Different Constraints.
Journal of Molecular Biology,
Vol. 390,
Issue. 3,
p.
428.
Chung, Betty Y.-W.
Firth, Andrew E.
and
Atkins, John F.
2010.
Frameshifting in Alphaviruses: A Diversity of 3′ Stimulatory Structures.
Journal of Molecular Biology,
Vol. 397,
Issue. 2,
p.
448.
Mouzakis, Kathryn D.
Burke, Jordan E.
and
Butcher, Samuel E.
2012.
Biophysical approaches to translational control of gene expression.
p.
141.
Ritchie, Dustin B.
Foster, Daniel A. N.
and
Woodside, Michael T.
2012.
Programmed −1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding.
Proceedings of the National Academy of Sciences,
Vol. 109,
Issue. 40,
p.
16167.
Huang, Xiaolan
Cheng, Qiang
and
Du, Zhihua
2013.
A Genome-Wide Analysis of RNA Pseudoknots That Stimulate Efficient −1 Ribosomal Frameshifting or Readthrough in Animal Viruses.
BioMed Research International,
Vol. 2013,
Issue. ,
p.
1.
Ritchie, Dustin B.
Soong, Jingchyuan
Sikkema, William K. A.
and
Woodside, Michael T.
2014.
Anti-frameshifting Ligand Reduces the Conformational Plasticity of the SARS Virus Pseudoknot.
Journal of the American Chemical Society,
Vol. 136,
Issue. 6,
p.
2196.
Atkins, John F.
Loughran, Gary
Bhatt, Pramod R.
Firth, Andrew E.
and
Baranov, Pavel V.
2016.
Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.
Nucleic Acids Research,
p.
gkw530.
Chen, Yu-Ting
Chang, Kai-Chun
Hu, Hao-Teng
Chen, Yi-Lan
Lin, You-Hsin
Hsu, Chiung-Fang
Chang, Cheng-Fu
Chang, Kung-Yao
and
Wen, Jin-Der
2017.
Coordination among tertiary base pairs results in an efficient frameshift-stimulating RNA pseudoknot.
Nucleic Acids Research,
Vol. 45,
Issue. 10,
p.
6011.