Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T05:54:06.810Z Has data issue: false hasContentIssue false

The ageing immune system and its clinical implications

Published online by Cambridge University Press:  16 December 2010

DTHJ Wordsworth
Affiliation:
Department of Immunobiology, School of Medicine, King's College London, UK
DK Dunn-Walters*
Affiliation:
Department of Immunobiology, School of Medicine, King's College London, UK
*
Address for correspondence: Dr Deborah Dunn-Walters, Department of Immunobiology, King's College London School of Medicine, Guy's Campus, London SE1 9RT. Email: [email protected]

Summary

Ageing is associated with multiple changes in many different components of the immune system. A healthy immune system exists in a state of balance between efficient effector responses against pathogens and tolerance to self antigens. This balance is changed with age; functions such as antigen recognition, phagocytosis, antigen presentation, chemotaxis, cytokine secretion and killing ability are all compromised. Aberrant cellular responses lead to an altered cytokine network with increases in inflammatory cytokines and decreases in anti-inflammatory cytokines leading to a pro-inflammatory state. Consequently older patients require extra care in diagnosis of infections as symptoms may be perturbed, resulting in unusual presentations of common conditions. The defects in immunity due to immunosenescence also mean that older patients require more care and screening than other patients in the same disease cohort. Though it is generally understood by clinicians that older patients are more at risk from multiple infections, the wider clinical effects of immunosenescence are less understood. The immune system is involved in several neurodegenerative conditions and the inflammatory conditions of immunosenescence may be a key factor in pathogenesis. Similarly, there is reason to believe that immunosenescence might be a key factor explaining the increased incidence of cancer in older age. With increasing understanding of the immune system's involvement in many of these pathological processes, and the contribution that immunosenescence makes to these, more efficient vaccines and novel therapies may be developed to prevent/treat these conditions.

Type
Biological gerontology
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Office of National Statistics. National projections. Available at: http://www.statistics.gov.uk/CCI/nugget.asp?ID=1352&Pos=4&ColRank= (accessed 8 August 2010).Google Scholar
2Strindhall, J, Nilsson, BO, Löfgren, S, Ernerudh, J, Pawelec, G, Johansson, B, Wikby, A. No immune risk profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 2007; 42: 753–61.CrossRefGoogle ScholarPubMed
3Li Jeon, N, Baskaran, H, Dertinger, SK, Whitesides, GM, Van de Water, L, Toner, M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 2002; 20: 826–30.CrossRefGoogle Scholar
4Sun, WY, Pitson, SM, Bonder, CS. Tumor necrosis factor-induced neutrophil adhesion occurs via sphingosine kinase-1-dependent activation of endothelial α5β1 integrin. Am J Pathol 2010; 177: 436–46.CrossRefGoogle Scholar
5Semerad, CL, Liu, F, Gregory, AD, Stumpf, K, Link, DC. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 2002; 17: 413–23.CrossRefGoogle ScholarPubMed
6Chelvarajan, RL, Liu, Y, Popa, D, Getchell, ML, Getchell, TV, Stromberg, AJ, Bondada, S. Molecular basis of age associated cytokine dysregulation in LPS stimulated macrophages. J Leukoc Biol 2006; 79: 1314–27.CrossRefGoogle ScholarPubMed
7Sebastián, C, Herrero, C, Serra, M, Lloberas, J, Blasco, MA, Celada, A. Telomere shortening and oxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol 2009; 183: 2356–64.CrossRefGoogle ScholarPubMed
8van Duin, D, Allore, HG, Mohanty, S, Ginter, S, Newman, FK, Belshe, RB, Medzhitov, R, Shaw, AC. Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis 2007; 195: 1590–97.CrossRefGoogle ScholarPubMed
9Dale, DC, Boxer, L, Liles, WC. The phagocytes: neutrophils and monocytes. Blood 2008; 112: 935–45.CrossRefGoogle ScholarPubMed
10Kobayashi, SD, Voyich, JM, Whitney, AR, DeLeo, FR. Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leukoc Biol 2005; 78: 1408–18.CrossRefGoogle ScholarPubMed
11Singh, A, Zarember, KA, Kuhns, DB, Gallin, JI. Impaired priming and activation of the neutrophil NADPH oxidase in patients with IRAK4 or NEMO deficiency. J Immunol 2009; 182: 6410–17.CrossRefGoogle ScholarPubMed
12Jin, T, Xu, X, Fang, J, Isik, N, Yan, J, Brzostowski, JA, Hereld, D. How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res 2009; 43: 118–27.CrossRefGoogle ScholarPubMed
13Weisel, KC, Bautz, F, Seitz, G, Yildirim, S, Kanz, L, Möhle, R. Modulation of CXC chemokine receptor expression and function in human neutrophils during aging in vitro suggests a role in their clearance from circulation. Mediators Inflamm 2009; 2009: 790174.CrossRefGoogle ScholarPubMed
14Fortin, CF, Larbi, A, Dupuis, G, Lesur, O, Fülöp, T Jr. GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. A: Biogerontology 2007; 8: 173–87.Google Scholar
15Tortorella, C, Simone, O, Piazzolla, G, Stella, I, Cappiello, V, Antonaci, S. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci 2006; 61: 1111–18.CrossRefGoogle ScholarPubMed
16Fortin, CF, Larbi, A, Lesur, O, Douziech, N, Fulop, T Jr. Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 2006; 79: 1061–72.CrossRefGoogle ScholarPubMed
17Fortin, CF, Lesur, O, Fulop, T Jr.Effects of aging on triggering receptor expressed on myeloid cells (TREM)-1-induced PMN functions. B: FEBS Lett 2007; 581: 1173–78.Google ScholarPubMed
18Rosenstiel, P, Derer, S, Till, A, Häsler, R, Eberstein, H, Bewig, B, Nikolaus, S, Nebel, A, Schreiber, S. Systematic expression profiling of innate immune genes defines a complex pattern of immunosenescence in peripheral and intestinal leukocytes. Genes Immun 2008; 9: 103–14.CrossRefGoogle ScholarPubMed
19Butcher, SK, Chahal, H, Nayak, L, Sinclair, A, Henriquez, NV, Sapey, E, O'Mahony, D, Lord, JM. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 2001; 70: 881–86.CrossRefGoogle ScholarPubMed
20Panda, A, Qian, F, Mohanty, S, van Duin, D, Newman, FK, Zhang, L, Chen, S, Towle, V, Belshe, RB, Fikrig, E, Allore, HG, Montgomery, RR, Shaw, AC. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol 2010; 184: 2518–27.CrossRefGoogle ScholarPubMed
21Della Bella, S, Bierti, L, Presicce, P, Arienti, R, Valenti, M, Saresella, M, Vergani, C, Villa, ML. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol 2007; 122: 220–28.CrossRefGoogle ScholarPubMed
22Canaday, DH, Amponsah, NA, Ramachandra, L. The Geriatric adults have a significant defect in interferon-alpha production in response to influenza. J Immunol 2009; 182: 133.50.CrossRefGoogle Scholar
23Grolleau-Julius, A, Harning, EK, Abernathy, LM, Yung, RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res 2008; 68: 6341–49.CrossRefGoogle ScholarPubMed
24Lazuardi, L, Jenewein, B, Wolf, AM, Pfister, G, Tzankov, A, Grubeck-Loebenstein, B. Age-related loss of naïve T cells and dysregulation of T cell/B cell interactions in human lymph nodes. Immunology 2005; 114: 3743.CrossRefGoogle ScholarPubMed
25Banerjee, M, Mehr, R, Belelovsky, A, Spencer, J, Dunn-Walters, DK. Age- and tissue-specific differences in human germinal center B cell selection revealed by analysis of IgVH gene hypermutation and lineage trees. Eur J Immunol 2002; 32: 1947–57.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
26Banerjee, M, Sanderson, JD, Spencer, J, Dunn-Walters, DK. Immunohistochemical analysis of ageing human B and T cell populations reveals an age-related decline of CD8 T cells in spleen but not gut-associated lymphoid tissue (GALT). Mech Ageing Dev 2000; 115: 8599.CrossRefGoogle Scholar
27Rossi, DJ, Bryder, D, Seita, J, Nussenzweig, A, Hoeijmakers, J, Weissman, IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447: 725–29.CrossRefGoogle ScholarPubMed
28Rossi, DJ, Bryder, D, Zahn, JM, Ahlenius, H, Sonu, R, Wagers, AJ, Weissman, IL. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 2005; 102: 9194–99.CrossRefGoogle ScholarPubMed
29Nijnik, A, Woodbine, L, Marchetti, C et al. DNA repair is limiting for haematopoietic stem cells during ageing. Clin Immunol 2008; 127: 107–18.Google Scholar
30Song, Z, Wang, J, Guachalla, LM, Terszowski, G, Rodewald, HR, Ju, Z, Rudolph, KL. Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 2010; 115: 1481–89.CrossRefGoogle Scholar
31Mazzoccoli, G, De Cata, A, Carughi, S, Greco, A, Inglese, M, Perfetto, F, Tarquini, R. A possible mechanism for altered immune response in the elderly. In Vivo 2010; 24: 471–87.Google ScholarPubMed
32Czesnikiewicz-Guzik, M, Lee, WW, Cui, D, Hiruma, Y, Lamar, DL, Yang, ZZ, Ouslander, JG, Weyand, CM, Goronzy, JJ. T cell subset-specific susceptibility to aging. Clin Immunol 2008; 127: 107–18.CrossRefGoogle ScholarPubMed
33Naylor, K, Li, G, Vallejo, AN, Lee, WW, Koetz, K, Bryl, E, Witkowski, J, Fulbright, J, Weyand, CM, Goronzy, JJ. The influence of age on T cell generation and TCR diversity. J Immunol 2005; 174: 7446–52.CrossRefGoogle Scholar
34Haynes, L, Eaton, SM. The effect of age on the cognate function of CD4+ T cells. Immunol Rev 2005; 205: 220–28.CrossRefGoogle ScholarPubMed
35Jiang, J, Bennett, AJ, Fisher, E, Williams-Bey, Y, Shen, H, Murasko, DM. Limited expansion of virus-specific CD8 T cells in the aged environment. Mech Ageing Dev 2009; 130: 713–21.CrossRefGoogle ScholarPubMed
36Ahmed, M, Lanzer, KG, Yager, EJ, Adams, PS, Johnson, LL, Blackman, MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. J Immunol 2009; 182: 784–92.CrossRefGoogle ScholarPubMed
37McElhaney, JE, Ewen, C, Zhou, X, Kane, KP, Xie, D, Hager, WD, Barry, MB, Kleppinger, A, Wang, Y, Bleackley, RC. Granzyme B: Correlates with protection and enhanced CTL response to influenza vaccination in older adults. Vaccine 2009; 27: 2418–25.CrossRefGoogle ScholarPubMed
38Kuhn, A, Beissert, S, Krammer, PH. CD4(+)CD25 (+) regulatory T cells in human lupus erythematosus. Arch Dermatol Res 2009; 301: 7181.CrossRefGoogle ScholarPubMed
39Lages, CS, Suffia, I, Velilla, PA, Huang, B, Warshaw, G, Hildeman, DA, Belkaid, Y, Chougnet, C. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 2008; 181: 1835–48.CrossRefGoogle ScholarPubMed
40Listì, F, Candore, G, Modica, MA, Russo, M, Di Lorenzo, G, Esposito-Pellitteri, M, Colonna-Romano, G, Aquino, A, Bulati, M, Lio, D, Franceschi, C, Caruso, C. A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann NY Acad Sci 2006; 1089: 487–95.CrossRefGoogle ScholarPubMed
41Lescale, C, Dias, S, Maës, J, Cumano, A, Szabo, P, Charron, D, Weksler, ME, Dosquet, C, Vieira, P, Goodhardt, M. Reduced EBF expression underlies loss of B-cell potential of hematopoietic progenitors with age. Aging Cell 2010; 9: 410–19.CrossRefGoogle ScholarPubMed
42Gibson, KL, Wu, YC, Barnett, Y, Duggan, O, Vaughan, R, Kondeatis, E, Nilsson, BO, Wikby, A, Kipling, D, Dunn-Walters, DK. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell 2009; 8: 1825.CrossRefGoogle ScholarPubMed
43Flad, HD, Brandt, E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 2010; 67: 2363–86.CrossRefGoogle ScholarPubMed
44Sprague, AH, Khalil, RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78: 539–52.CrossRefGoogle ScholarPubMed
45Larbi, A, Franceschi, C, Mazzatti, D, Solana, R, Wikby, A, Pawelec, G. Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda) 2008; 23: 6474.Google ScholarPubMed
46McNerlan, SE, Armstrong, M, Ross, OA, Rea, IM. Cytokine expression and production changes in very old age. In Handbook on Immunosenescence, Fulop, T. et al. . (eds), 2009; pp. 771779. Springer.CrossRefGoogle Scholar
47McNerlan, SE, Rea, IM, Alexander, HD. A whole blood method for measurement of intracellular TNF-alpha, IFN-gamma and IL-2 expression in stimulated CD3+ lymphocytes: differences between young and elderly subjects. Exp Gerontol 2002; 37: 227–34.CrossRefGoogle Scholar
48Rea, IM, McNerlan, SE, Alexander, HD. CD69, CD25, and HLA-DR activation antigen expression on CD3+ lymphocytes and relationship to serum TNF-alpha, IFN-gamma, and sIL-2R levels in aging. Exp Gerontol 1999; 34: 7993.CrossRefGoogle ScholarPubMed
49Rea, IM, McNerlan, SE, Alexander, HD. Total serum IL-12 and IL-12p40, but not IL-12p70, are increased in the serum of older subjects; relationship to CD3(+) and NK subsets. Cytokine 2000; 12: 156–59.CrossRefGoogle Scholar
50Zhu, S, Patel, KV, Bandinelli, S, Ferrucci, L, Guralnik, JM. Predictors of interleukin-6 elevation in older adults. J Am Geriatr Soc 2009; 57: 1672–77.CrossRefGoogle ScholarPubMed
51Hurme, M, Lehtimäki, T, Jylhä, M, Karhunen, PJ, Hervonen, A. Interleukin-6-174G/C polymorphism and longevity: a follow-up study. Mech Ageing Dev 2005; 126: 417–18.CrossRefGoogle ScholarPubMed
52Alvarez, V, Mata, IF, González, P, Lahoz, CH, Martínez, C, Peña, J, Guisasola, LM, Coto, E. Association between the TNFalpha-308 A/G polymorphism and the onset-age of Alzheimer disease. Am J Med Genet 2002; 114: 574–77.CrossRefGoogle ScholarPubMed
53Bruunsgaard, H, Skinhøj, P, Pedersen, AN, Schroll, M, Pedersen, BK. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol 2000; 121: 255–60.CrossRefGoogle ScholarPubMed
54Forsey, RJ, Thompson, JM, Ernerudh, J, Hurst, TL, Strindhall, J, Johansson, B, Nilsson, BO, Wikby, A. Plasma cytokine profiles in elderly humans. Mech Ageing Dev 2003; 124: 487–93.CrossRefGoogle ScholarPubMed
55Wikby, A, Nilsson, BO, Forsey, R, Thompson, J, Strindhall, J, Löfgren, S, Ernerudh, J, Pawelec, G, Ferguson, F, Johansson, B. The immune risk phenotype is associated with IL-6 in the terminal decline stage: Findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 2006; 127: 695704.CrossRefGoogle ScholarPubMed
56Johansen, JS, Pedersen, AN, Schroll, M, Jørgensen, T, Pedersen, BK, Bruunsgaard, H. High serum YKL-40 level in a cohort of octogenarians is associated with increased risk of all-cause mortality. Clin Exp Immunol 2008; 151: 260–66.CrossRefGoogle Scholar
57Borlon, C, Weemaels, G, Godard, P, Debacq-Chainiaux, F, Lemaire, P, Deroanne, C, Toussaint, O. Expression profiling of senescent-associated genes in human dermis from young and old donors. Proof-of-concept study. Biogerontology 2008; 9: 197208.CrossRefGoogle Scholar
58Huang, MC, Liao, JJ, Bonasera, S, Longo, DL, Goetzl, EJ. Nuclear factor-κB-dependent reversal of aging-induced alterations in T cell cytokines. FASEB J 2008; 22: 2142–50.CrossRefGoogle ScholarPubMed
59Rappl, G, Schmidt, A, Mauch, C, Hombach, AA, Abken, H. Extensive amplification of human regulatory T cells alters their functional capacities and targets them to the periphery. Rejuvenation Res 2008; 11: 915–33.CrossRefGoogle Scholar
60Lim, SC, Doshi, V, Castasus, B, Lim, JK, Mamun, K. Factors causing delay in discharge of elderly patients in an acute care hospital. Ann Acad Med Singapore 2006; 35: 2732.CrossRefGoogle Scholar
61Girard, TD, Ely, EW. Bacteremia and sepsis in older adults. Clin Geriatr Med 2007; 23: 633–47.CrossRefGoogle ScholarPubMed
62Caterino, JM. Evaluation and management of geriatric infections in the emergency department. Emerg Med Clin North Am 2008; 26: 319–43.CrossRefGoogle ScholarPubMed
63Tal, S, Guller, V, Gurevich, A. Fever of unknown origin in older adults. Clin Geriatr Med 2007; 23: 649–68.CrossRefGoogle ScholarPubMed
64Samaras, N, Chevalley, T, Samaras, D, Gold, G. Older patients in the emergency department: a review. Ann Emerg Med 2010; 56: 261–69.CrossRefGoogle ScholarPubMed
65Trotter, CL, Stuart, JM, George, R, Miller, E. Increasing hospital admissions for pneumonia, England. Emerg Infect Dis 2008; 14: 727–33.CrossRefGoogle ScholarPubMed
66Lim, WS, Baudouin, SV, George, RC, Hill, AT, Jamieson, C, Le Jeune, I, Macfarlane, JT, Read, RC, Roberts, HJ, Levy, ML, Wani, M, Woodhead, MA; Pneumonia Guidelines Committee of the BTS Standards of Care Committee. BTS guidelines for the management of community acquired pneumonia in adults: update 2009. Pneumonia Guidelines Committee of the BTS Standards of Care Committee. Thorax 2009; 64 suppl 3: iii1–55.Google Scholar
67Lim, WS, Van Der Eerden, MM, Laing, R, Boersma, WG, Karalus, N, Town, GI, Lewis, SA, Macfarlane, JT. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 2003; 58: 377–82.CrossRefGoogle ScholarPubMed
68Teramoto, S, Yamamoto, H, Yamaguchi, Y, Hanaoka, Y, Ishii, M, Hibi, S, Kume, H, Ouchi, Y. Lower respiratory tract infection outcomes are predicted better by an age >80 years than by CURB-65. Eur Respir J 2008; 31: 477–78.CrossRefGoogle ScholarPubMed
69Parsonage, M, Nathwani, D, Davey, P, Barlow, G. Evaluation of the performance of CURB-65 with increasing age. Clin Microbiol Infect 2009; 15: 858–64.CrossRefGoogle ScholarPubMed
70Ducharme, J, Neilson, S, Ginn, JL. Can urine cultures and reagent test strips be used to diagnose urinary tract infection in elderly emergency department patients without focal urinary symptoms? CJEM 2007; 9: 8792.CrossRefGoogle ScholarPubMed
71Arinzon, Z, Peisakh, A, Shuval, I, Shabat, S, Berner, YN. Detection of urinary tract infection (UTI) in long-term care setting: Is the multireagent strip an adequate diagnostic tool? Arch Gerontol Geriatr 2009; 48: 227–31.CrossRefGoogle ScholarPubMed
72Eriksson, I, Gustafson, Y, Fagerström, L, Olofsson, B. Urinary tract infection in very old women is associated with delirium. Int Psychogeriatr 2010; Aug 18: 1–7 [Epub ahead of print].Google Scholar
73Rhoads, J, Clayman, A, Nelson, S. The relationship of urinary tract infections and falls in a nursing home. Director 2007; 15: 2226.Google ScholarPubMed
74Kamel, HK. The frequency and factors linked to a urinary tract infection coding in patients undergoing hip fracture surgery. J Am Med Dir Assoc 2005; 6: 316–20.CrossRefGoogle ScholarPubMed
75Gopal Rao, G, Patel, M. Urinary tract infection in hospitalized elderly patients in the United Kingdom: the importance of making an accurate diagnosis in the post broad-spectrum antibiotic era. J Antimicrob Chemother 2009; 63: 56.CrossRefGoogle ScholarPubMed
76Stowe, RP, Kozlova, EV, Yetman, DL, Walling, DM, Goodwin, JS, Glaser, R. Chronic herpes virus reactivation occurs in aging. Exp Gerontol 2007; 42: 563–70.CrossRefGoogle ScholarPubMed
77de la Hoz, RE, Stephens, G, Sherlock, C. Diagnosis and treatment approaches of CMV infections in adult patients. J Clin Virol 2002; 25 suppl 2: S112.CrossRefGoogle ScholarPubMed
78Staras, SA, Dollard, SC, Radford, KW, Flanders, WD, Pass, RF, Cannon, MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis 2006; 43: 1143–51.CrossRefGoogle ScholarPubMed
79Schwanninger, A, Weinberger, B, Weiskopf, D, Herndler-Brandstetter, D, Reitinger, S, Gassner, C, Schennach, H, Parson, W, Würzner, R, Grubeck-Loebenstein, B. Age-related appearance of a CMV-specific high-avidity CD8+ T cell clonotype which does not occur in young adults. Immun Ageing 2008; 5: 14.CrossRefGoogle Scholar
80Brunner, S, Herndler-Brandstetter, D, Weinberger, B, Grubeck-Loebenstein, B. Persistent viral infections and immune aging. Ageing Res Rev 2010; Aug 19 [Epub ahead of print].CrossRefGoogle Scholar
81Naeger, DM, Martin, JN, Sinclair, E, Hunt, PW, Bangsberg, DR, Hecht, F, Hsue, P, McCune, JM, Deeks, SG. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One 2010; 5: e8886.CrossRefGoogle ScholarPubMed
82Centre for disease control. Cases of HIV Infection and AIDS in the United States and Dependent Areas, by Race/Ethnicity, 2003–2007. HIV/AIDS Surveillance Supplemental Report – volume 14, number 2. Available at: http://www.cdc.gov/hiv/topics/surveillance/resources/reports/2009supp_vol14no2/default.htm (accessed 8 August 2010).Google Scholar
83Mothe, B, Perez, I, Domingo, P, Podzamczer, D, Ribera, E, Curran, A, Viladés, C, Vidal, F, Dalmau, D, Pedrol, E, Negredo, E, Moltó, J, Paredes, R, Perez-Alvarez, N, Gatell, JM, Clotet, B. HIV-1 infection in subjects older than 70: a multicenter cross-sectional assessment in Catalonia. Spain Curr HIV Res 2009; 7: 597600.CrossRefGoogle ScholarPubMed
84Ruiz, M, Cefalu, C, Ogbuokiri, J. A dedicated screening program for geriatric HIV-infected patients integrating HIV and geriatric care. J Int Assoc Physicians AIDS Care (Chic III) 2010; 9: 157–61.CrossRefGoogle ScholarPubMed
85Goulet, JL, Fultz, SL, Rimland, D, Butt, A, Gibert, C, Rodriguez-Barradas, M, Bryant, K, Justice, AC. Aging and infectious diseases: do patterns of comorbidity vary by HIV status, age, and HIV severity? Clin Infect Dis 2007; 45: 1593–601.CrossRefGoogle ScholarPubMed
86Gardner, EM, Gonzalez, EW, Nogusa, S, Murasko, DM. Age related changes in the immune response to influenza vaccination in a racially diverse, healthy elderly population. Vaccine 2006; 24: 1609–14.CrossRefGoogle Scholar
87Michel, JP, Chidiac, C, Grubeck-Loebenstein, B, Johnson, RW, Lambert, PH, Maggi, S, Moulias, R, Nicholson, K, Werner, H. Advocating vaccination of adults aged 60 years and older in Western Europe: statement by the Joint Vaccine Working Group of the European Union Geriatric Medicine Society and the International Association of Gerontology and Geriatrics-European Region. Rejuvenation Res 2009; 12: 127–35.CrossRefGoogle Scholar
88Goodwin, K, Viboud, C, Simonsen, L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 2006; 24: 1159–69.CrossRefGoogle ScholarPubMed
89Cagigi, A, Nilsson, A, Pensieroso, S, Chiodi, F. Dysfunctional B-cell responses during HIV-1 infection: implication for influenza vaccination and highly active antiretroviral therapy. Lancet Infect Dis 2010; 10: 499503.CrossRefGoogle ScholarPubMed
90Weycker, D, Strutton, D, Edelsberg, J, Sato, R, Jackson, LA. Clinical and economic burden of pneumococcal disease in older US adults. Vaccine 2010; 28: 4955–60.CrossRefGoogle ScholarPubMed
91Evers, SM, Ament, AJ, Colombo, GL, Konradsen, HB, Reinert, RR, Sauerland, D, Wittrup-Jensen, K, Loiseau, C, Fedson, DS. Cost-effectiveness of pneumococcal vaccination for prevention of invasive pneumococcal disease in the elderly: an update for 10 Western European countries. Eur J Clin Microbiol Infect Dis 2007; 26: 531–40.CrossRefGoogle ScholarPubMed
92Parsons, HK, Metcalf, SC, Tomlin, K, Read, RC, Dockrell, DH. Invasive pneumococcal disease and the potential for prevention by vaccination in the United Kingdom. J Infect 2007; 54: 435–38.CrossRefGoogle ScholarPubMed
93Noakes, K, Pebody, RG, Gungabissoon, U, Stowe, J, Miller, E. Pneumococcal polysaccharide vaccine uptake in England, 1989–2003, prior to the introduction of a vaccination programme for older adults. J Public Health (Oxf) 2006; 28: 242–47.CrossRefGoogle Scholar
94Jardine, A, Menzies, RI, McIntyre, PB. Reduction in hospitalizations for pneumonia associated with the introduction of a pneumococcal conjugate vaccination schedule without a booster dose in Australia. Pediatr Infect Dis J 2010; 29: 607–12.CrossRefGoogle ScholarPubMed
95Schenkein, JG, Park, S, Nahm, MH. Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency. Vaccine 2008; 26: 5521–26.CrossRefGoogle ScholarPubMed
96Ongrádi, J, Kövesdi, V. Factors that may impact on immunosenescence: an appraisal. Immun Ageing 2010; 7: 7.CrossRefGoogle ScholarPubMed
97Freeman, SL, Fisher, L, German, JB, Leung, PS, Prince, H, Selmi, C, Naguwa, SM, Gershwin, ME. Dairy proteins and the response to pneumovax in senior citizens: a randomized, double-blind, placebo-controlled pilot study. Ann NY Acad Sci 2010; 1190: 97103.CrossRefGoogle ScholarPubMed
98Woods, JA, Keylock, KT, Lowder, T, Vieira, VJ, Zelkovich, W, Dumich, S, Colantuano, K, Lyons, K, Leifheit, K, Cook, M, Chapman-Novakofski, K, McAuley, E. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc 2009; 57: 2183–91.CrossRefGoogle ScholarPubMed
99Yang, Y, Verkuilen, J, Rosengren, KS, Mariani, RA, Reed, M, Grubisich, SA, Woods, JA. Effects of a Taiji and Qigong intervention on the antibody response to influenza vaccine in older adults. Am J Chin Med 2007; 35: 597607.CrossRefGoogle ScholarPubMed
100Edwards, KM, Campbell, JP, Ring, C, Drayson, MT, Bosch, JA, Downes, C, Long, JE, Lumb, JA, Merry, A, Paine, NJ, Burns, VE. Exercise intensity does not influence the efficacy of eccentric exercise as a behavioural adjuvant to vaccination. Brain Behav Immun 2010; 24: 623–30.CrossRefGoogle Scholar
101Phillips, AC, Carroll, D, Burns, VE, Drayson, M. Cardiovascular activity and the antibody response to vaccination. J Psychosom Res 2009; 67: 3743.CrossRefGoogle ScholarPubMed
102Hasler, P, Zouali, M. Immune receptor signalling, aging, and autoimmunity. Cell Immunol 2005; 233: 102–8.CrossRefGoogle ScholarPubMed
103Thewissen, M, Somers, V, Venken, K, Linsen, L, van Paassen, P, Geusens, P, Damoiseaux, J, Stinissen, P. Analyses of immunosenescent markers in patients with autoimmune disease. Clin Immunol 2007; 123: 209–18.CrossRefGoogle ScholarPubMed
104Agrawal, A, Tay, J, Ton, S, Agrawal, S, Gupta, S. Increased reactivity of dendritic cells from aged subjects to self-antigen, the human DNA. J Immunol 2009; 182: 1138–45.CrossRefGoogle ScholarPubMed
105Andersen-Ranberg, K, HØier-Madsen, M, Wiik, A, Jeune, B, Hegedus, L. High prevalence of autoantibodies among Danish centenarians. Clin Exp Immunol 2004; 138: 158–63.CrossRefGoogle ScholarPubMed
106Rodríguez-Bayona, B, Ramos-Amaya, A, Pérez-Venegas, JJ, Rodríguez, C, Brieva, JA. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther 2010; 12: R108.CrossRefGoogle ScholarPubMed
107Jacobi, AM, Reiter, K, Mackay, M, Aranow, C, Hiepe, F, Radbruch, A, Hansen, A, Burmester, GR, Diamond, B, Lipsky, PE, Dörner, T. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008; 58: 1762–73.CrossRefGoogle ScholarPubMed
108Corcione, A, Ferlito, F, Gattorno, M, Gregorio, A, Pistorio, A, Gastaldi, R, Gambini, C, Martini, A, Traggiai, E, Pistoia, V. Phenotypic and functional characterization of switch memory B cells from patients with oligoarticular juvenile idiopathic arthritis. Arthritis Res Ther 2009; 11: R150.CrossRefGoogle ScholarPubMed
109Colonna-Romano, G, Bulati, M, Aquino, A, Pellicanò, M, Vitello, S, Lio, D, Candore, G, Caruso, C. A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev 2009; 130: 681–90.CrossRefGoogle ScholarPubMed
110Pal, SK, Katheria, V, Hurria, A. Evaluating the older patient with cancer: understanding frailty and the geriatric assessment. CA: Cancer J Clin 2010; 60: 120–32.Google ScholarPubMed
111Fulop, T, Kotb, R, Fortin, CF, Pawelec, G, de Angelis, F, Larbi, A. Potential role of immunosenescence in cancer development. Ann NY Acad Sci 2010; 1197: 158–65.CrossRefGoogle ScholarPubMed
112Smyth, MJ, Dunn, GP, Schreiber, RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006; 90: 150.CrossRefGoogle ScholarPubMed
113Pawelec, G, Derhovanessian, E, Larbi, A. Immunosenescence and cancer. Crit Rev Oncol Hematol 2010; 75: 165–72.CrossRefGoogle ScholarPubMed
114Buell, JF, Gross, TG, Woodle, ES. Malignancy after transplantation. Transplantation 2005; 80 (2 suppl): S25464.CrossRefGoogle ScholarPubMed
115Monforte, A, Abrams, D, Pradier, C, Weber, R, Reiss, P, Bonnet, F, Kirk, O, Law, M, De Wit, S, Friis-Møller, N, Phillips, AN, Sabin, CA, Lundgren, JD; Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study Group. HIV-induced immunodeficiency and mortality from AIDS-defining and non-AIDS-defining malignancies. Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) Study Group. AIDS 2008; 22: 2143–53.Google Scholar
116Notarangelo, LD. PIDs and cancer: an evolving story. Blood 2010; 116: 1189–90.CrossRefGoogle ScholarPubMed
117Ferrando-Martínez, S, Ruiz-Mateos, E, Hernández, A, Gutiérrez, E, Rodríguez-Méndez, MD, Ordoñez, A, Leal, M. Age-related deregulation of naive T cell homeostasis in elderly humans. Age (Dordr) 2010; Aug 11 [Epub ahead of print].CrossRefGoogle Scholar
118Mocchegiani, E, Malavolta, M. NK and NKT cell functions in immunosenescence. Aging Cell 2004; 3: 177–84.CrossRefGoogle ScholarPubMed
119Effros, RB, Cai, Z, Linton, PJ. CD8 T cells and aging. Crit Rev Immunol 2003; 23: 4564.CrossRefGoogle ScholarPubMed
120Trzonkowski, P, Szmit, E, Myśliwska, J, Myśliwski, A. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of CTL and NK cells in humans-impact of immunosenescence. Clin Immunol 2006; 119: 307–16.CrossRefGoogle ScholarPubMed
121Wang, L, Pan, XD, Xie, Y, Zhang, GB, Jiang, M, Zheng, L, Wang, JH, Shi, JF, Zhang, XG. Altered CD28 and CD95 mRNA expression in peripheral blood mononuclear cells from elderly patients with primary non-small cell lung cancer. Chin Med J 2010; 123: 5156.Google ScholarPubMed
122Sharma, S, Dominguez, AL, Hoelzinger, DB, Lustgarten, J. CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Cancer Immunol Immunother 2008; 57: 549–61.CrossRefGoogle Scholar
123Okazaki, T, Ebihara, S, Asada, M, Kanda, A, Sasaki, H, Yamaya, M. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 2006; 18: 19.CrossRefGoogle ScholarPubMed
124Hao, JS, Shan, BE. Immune enhancement and anti-tumour activity of IL-23. Cancer Immunol Immunother 2006; 55: 1426–31.CrossRefGoogle ScholarPubMed
125Knüpfer, H, Preiss, R. Serum interleukin-6 levels in colorectal cancer patients – a summary of published results. Int J Colorectal Dis 2010; 25: 135–40.CrossRefGoogle ScholarPubMed
126Maitland, NJ, Collins, AT. Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection? J Cell Biochem 2008; 105: 931–39.CrossRefGoogle ScholarPubMed
127Sportès, C, Babb, RR, Krumlauf, MC, Hakim, FT, Steinberg, SM, Chow, CK, Brown, MR, Fleisher, TA, Noel, P, Maric, I, Stetler-Stevenson, M, Engel, J, Buffet, R, Morre, M, Amato, RJ, Pecora, A, Mackall, CL, Gress, RE. Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 2010; 16: 727–35.CrossRefGoogle ScholarPubMed
128Amor, S, Puentes, F, Baker, D, Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology 2010; 129: 154–69.CrossRefGoogle ScholarPubMed
129Palop, JJ, Mucke, L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 2010; 13: 812–18.CrossRefGoogle ScholarPubMed
130Nimmerjahn, A, Kirchhoff, F, Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–18.CrossRefGoogle ScholarPubMed
131Mandrekar, S, Jiang, Q, Lee, CY, Koenigsknecht-Talboo, J, Holtzman, DM, Landreth, GE. Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J Neurosci 2009; 29: 4252–62.CrossRefGoogle ScholarPubMed
132Yan, P, Hu, X, Song, H et al. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281: 24566–74.CrossRefGoogle ScholarPubMed
133Miners, JS, Baig, S, Tayler, H, Kehoe, PG, Love, S. Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity. J Neuropathol Exp Neurol 2009; 68: 902–14.CrossRefGoogle ScholarPubMed
134Bacher, M, Deuster, O, Aljabari, B, Egensperger, R, Neff, F, Jessen, F, Popp, J, Noelker, C, Reese, JP, Al-Abed, Y, Dodel, R. The role of macrophage migration inhibitory factor in Alzheimer's disease. Mol Med 2010; 16: 116–21.CrossRefGoogle ScholarPubMed
135Parachikova, A, Agadjanyan, MG, Cribbs, DH, Blurton-Jones, M, Perreau, V, Rogers, J, Beach, TG, Cotman, CW. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging 2007; 28: 1821–33.CrossRefGoogle ScholarPubMed
136Fuhrmann, M, Bittner, T, Jung, CK, Burgold, S, Page, RM, Mitteregger, G, Haass, C, LaFerla, FM, Kretzschmar, H, Herms, J. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nat Neurosci 2010; 13: 411–13.CrossRefGoogle Scholar
137Comi, C, Carecchio, M, Chiocchetti, A, Nicola, S, Galimberti, D, Fenoglio, C, Cappellano, G, Monaco, F, Scarpini, E, Dianzani, U. Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer's disease and its levels correlate with cognitive decline. J Alzheimers Dis 2010; 19: 1143–48.CrossRefGoogle ScholarPubMed
138Hickman, SE, Allison, EK, El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 2008; 28: 8354–60.CrossRefGoogle ScholarPubMed
139Hindle, JV. Ageing, neurodegeneration and Parkinson's disease. Age Ageing 2010; 39: 156–61.CrossRefGoogle ScholarPubMed
140De Lella Ezcurra, AL, Chertoff, M, Ferrari, C, Graciarena, M, Pitossi, F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 2010; 37: 630–40.CrossRefGoogle ScholarPubMed
141Wang, JY, Wen, LL, Huang, YN, Chen, YT, Ku, MC. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des 2006; 12: 3521–33.CrossRefGoogle ScholarPubMed
142Yan, ZQ, Hansson, GK. Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 2007; 219: 187203.CrossRefGoogle ScholarPubMed
143Gautier, EL, Jakubzick, C, Randolph, GJ. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol 2009; 29: 1412–18.CrossRefGoogle ScholarPubMed
144Otsui, K, Inoue, N, Kobayashi, S, Shiraki, R, Honjo, T, Takahashi, M, Hirata, K, Kawashima, S, Yokoyama, M. Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries. Heart Vessels 2007; 22: 416–22.CrossRefGoogle ScholarPubMed
145Yang, X, Coriolan, D, Murthy, V, Schultz, K, Golenbock, DT, Beasley, D. Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am J Physiol Heart Circ Physiol 2005; 289: H106976.CrossRefGoogle ScholarPubMed
146Miller, YI, Choi, SH, Fang, L, Harkewicz, R. Trends Toll-like receptor-4 and lipoprotein accumulation in macrophages. Cardiovasc Med 2009; 19: 227–32.Google ScholarPubMed
147Paulson, KE, Zhu, SN, Chen, M, Nurmohamed, S, Jongstra-Bilen, J, Cybulsky, MI. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 2010; 106: 383–90.CrossRefGoogle Scholar
148Kikuchi, T, El Shikh, MM, El Sayed, RM, Purkall, DB, Elaasser, MM, Sarraf, A, Barbour, SE, Schenkein, HA, Tew, JG. Anti-phosphorylcholine-opsonized low-density lipoprotein promotes rapid production of proinflammatory cytokines by dendritic cells and natural killer cells. J Periodontal Res 2010; 45: 720–30.CrossRefGoogle ScholarPubMed
149Bobryshev, YV. Dendritic cells and their role in atherogenesis. Lab Invest 2010; 90: 970–84.CrossRefGoogle ScholarPubMed
150Hermansson, A, Ketelhuth, DF, Strodthoff, D, Wurm, M, Hansson, EM, Nicoletti, A, Paulsson-Berne, G, Hansson, GK. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081–93.CrossRefGoogle ScholarPubMed
151Weng, NP, Akbar, AN, Goronzy, J. CD28(–) T cells: their role in the age-associated decline of immune function. Trends Immunol 2009; 30: 306–12.CrossRefGoogle ScholarPubMed
152Liuzzo, G, Goronzy, JJ, Yang, H, Kopecky, SL, Holmes, DR, Frye, RL, Weyand, CM. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000; 101: 2883–88.CrossRefGoogle ScholarPubMed
153Gerli, R, Schillaci, G, Giordano, A, Bocci, EB, Bistoni, O, Vaudo, G, Marchesi, S, Pirro, M, Ragni, F, Shoenfeld, Y, Mannarino, E. CD4+CD28– T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. Circulation 2004; 109: 2744–48.CrossRefGoogle ScholarPubMed
154Liuzzo, G, Biasucci, LM, Trotta, G, Brugaletta, S, Pinnelli, M, Digianuario, G, Rizzello, V, Rebuzzi, AG, Rumi, C, Maseri, A, Crea, F. Unusual CD4+CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol 2007; 50: 1450–58.CrossRefGoogle ScholarPubMed
155Simanek, AM, Dowd, JB, Aiello, AE. Persistent pathogens linking socioeconomic position and cardiovascular disease in the US. Int J Epidemiol 2009; 38: 775–87.CrossRefGoogle ScholarPubMed
156Roberts, ET, Haan, MN, Dowd, JB, Aiello, AE. Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 2010; 172: 363–71.CrossRefGoogle ScholarPubMed
157Listì, F, Caruso, M, Incalcaterra, E, Hoffmann, E, Caimi, G, Balistreri, CR, Vasto, S, Scafidi, V, Caruso, C, Candore, G. Pro-inflammatory gene variants in myocardial infarction and longevity: implications for pharmacogenomics. Curr Pharm Des 2008; 14: 2678–85.CrossRefGoogle ScholarPubMed
158Elhage, R, Jawien, J, Rudling, M, Ljunggren, HG, Takeda, K, Akira, S, Bayard, F, Hansson, GK. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 2003; 59: 234–40.CrossRefGoogle ScholarPubMed
159Brånén, L, Hovgaard, L, Nitulescu, M, Bengtsson, E, Nilsson, J, Jovinge, S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24: 2137–42.CrossRefGoogle ScholarPubMed