Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T15:38:29.276Z Has data issue: false hasContentIssue false

ON ADOPTING KRIPKE SEMANTICS IN SET THEORY

Published online by Cambridge University Press:  01 June 2008

LUCA INCURVATI*
Affiliation:
University of Cambridge
*
*DEPARTMENT OF PHILOSOPHY, ST. JOHN'S COLLEGE, CAMBRIDGE UNIVERSITY, CAMBRIDGE CB3 9DA, UK. E-mail: [email protected]

Abstract

Several philosophers have argued that the logic of set theory should be intuitionistic on the grounds that the open-endedness of the set concept demands the adoption of a nonclassical semantics. This paper examines to what extent adopting such a semantics has revisionary consequences for the logic of our set-theoretic reasoning. It is shown that in the context of the axioms of standard set theory, an intuitionistic semantics sanctions a classical logic. A Kripke semantics in the context of a weaker axiomatization is then considered. It is argued that this semantics vindicates an intuitionistic logic only insofar as certain constraints are put on its interpretation. Wider morals are drawn about the restrictions that this places on the shape of arguments for an intuitionistic revision of the logic of set theory.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Aczel, P., & Rathjen, M. (2000/2001). Notes on constructive set theory. Mathematical Logic, 40, 188, Institut Mittag-Leffler.Google Scholar
Akama, S. (1991). The Gentzen-Kripke construction of the intermediate logic LQ. Notre Dame Journal of Formal Logic, 33, 148153.CrossRefGoogle Scholar
Balaguer, M. (1998). Platonism and Anti-Platonism in Mathematics. Oxford: Oxford University Press.CrossRefGoogle Scholar
Benacerraf, P., & Putnam, H. (1983). Philosophy of Mathematics. Selected Readings (2nd edition). Cambridge: Cambridge University Press.Google Scholar
Boolos, G. (1971). The iterative conception of set. Journal of Philosophy, 68, 215231. Reprinted in Boolos [1998], pp. 1329.CrossRefGoogle Scholar
Boolos, G. (1989). Iteration again. Philosophical Topics, 17, 521. Reprinted in Boolos [1998], pp. 88104.CrossRefGoogle Scholar
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.Google Scholar
Clark, P. (1993). Sets and indefinitely extensible concepts and classes. Proceedings of the Aristotelian Society, 67, 235249.Google Scholar
DeVidi, D. (2004). Choice principles and constructive logics. Philosophia Mathematica, 12, 222243.Google Scholar
Diaconescu, R. (1975). Axiom of choice and complementation. Proceedings of the American Mathematical Society, 51, 176178.CrossRefGoogle Scholar
Dummett, M. (1959). A propositional calculus with denumerable matrix. Journal of Symbolic Logic, 24, 97106.CrossRefGoogle Scholar
Dummett, M. (1963). The philosophical significance of Gödel's theorem. Ratio, 5, 140155. Reprinted in Dummett [1978], pp. 186201.Google Scholar
Dummett, M. (1978). Truth and Other Enigmas. London: Duckworth.Google Scholar
Dummett, M. (1991). Frege. Philosophy of Mathematics. Cambridge, MA: Harvard University Press.Google Scholar
Dummett, M. (1993). What is mathematics about? In Dummett, M., editor. The Seas of Language. Oxford: Oxford University Press, pp. 429445.Google Scholar
Fine, K. (1981). First-order modal theories I: Sets. Noûs, 15, 177205.CrossRefGoogle Scholar
Foreman, M., Magidor, M., & Shelah, S. (1988). Martin's maximum, saturated ideals, and nonregular ultrafilters. Annals of Mathematics, 127, 147.CrossRefGoogle Scholar
Gödel, K. (1932). Zum intuitionistichen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, 69, 6566. Reprinted and translated in Gödel [1986], pp. 222225.Google Scholar
Gödel, K. (1986). Collected Works I. Oxford: Oxford University Press.Google Scholar
Goodman, N. (1985). Replacement and collection in intuitionistic set theory. Journal of Symbolic Logic, 50, 344348.CrossRefGoogle Scholar
Goodman, N., & Myhill, J. (1978). Choice implies excluded middle. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 23, 461.CrossRefGoogle Scholar
Hazen, A. (1982). On a possible misinterpretation of Kripke's semantics for intuitionistic logic. Analysis, 42, 128133.CrossRefGoogle Scholar
Hosoi, T., & Ono, H. (1973). Intermediate propositional logics (a survey). Journal of Tsuda College, 5, 6782.Google Scholar
Jech, T. (2003). Set Theory. The Third Millennium Edition. Berlin: Springer.Google Scholar
Kreisel, G. (1967). Informal rigour and completeness proofs. In Lakatos, I., editor. Problems in the Philosophy of Mathematics. Amsterdam: North-Holland, pp. 138171.CrossRefGoogle Scholar
Lear, J. (1977). Sets and semantics. Journal of Philosophy, 74, 86102.CrossRefGoogle Scholar
Lubarski, R. (2005). Independence results around constructive ZF. Annals of Pure and Applied Logic, 132, 209225.CrossRefGoogle Scholar
Myhill, J. (1973). Some properties of intuitionistic Zermelo-Fraenkel set theory. In Mathias, A. R. D., & Rogers, H., editors. Cambridge Summer School in Mathematical Logic. Lecture Notes in Mathematics, vol. 337. Berlin: Springer-Verlag, pp. 206231.Google Scholar
Myhill, J. (1975). Constructive set theory. Journal Symbolic Logic, 40, 347382.CrossRefGoogle Scholar
Parsons, C. (1974). Informal axiomatization, formalization, and the concept of truth. Synthese, 27, 2747.CrossRefGoogle Scholar
Parsons, C. (1983). Sets and modality. In Parsons, C., editor. Mathematics in Philosophy. Ithaca: Cornell University Press, pp. 298341.Google Scholar
Parsons, C. (2006). The problem of absolute universality. In Rayo, A., & Uzquiano, G., editors. Absolute Generality. Oxford: Oxford University Press, pp. 203219.CrossRefGoogle Scholar
Paseau, A. (2001). Should the logic of set theory be intuitionistic? Proceedings of the Aristotelian Society, 101, 369378.CrossRefGoogle Scholar
Paseau, A. (2003). The open-endedness of the set concept and the semantics of set theory. Synthese, 135, 381401.CrossRefGoogle Scholar
Paseau, A. (2007). Boolos on the justification of set theory. Philosophia Mathematica, 15, 3053.CrossRefGoogle Scholar
Powell, W. C. (1976). A completeness theorem for Zermelo-Fraenkel set theory. Journal of Symbolic Logic, 41, 323327.CrossRefGoogle Scholar
Reinhardt, W. N. (1974). Remarks on reflection principles, large cardinals, and elementary embeddings. In Jech, T. J., editor. Axiomatic Set Theory II. Proceedings of Symposia in Pure Mathematics, 13. Providence, RI: American Mathematical Society, pp. 189205.Google Scholar
Tait, W. W. (1998). Zermelo's conception of set theory and reflection principles. In Schirn, M., editor. The Philosophy of Mathematics Today. Oxford: Oxford University Press, pp. 469483.CrossRefGoogle Scholar
Troelstra, A., & van Dalen, D. (1988). Constructivism in Mathematics, vol. II. Amsterdam: North Holland.Google Scholar
Velleman, D. J. (1993). Constructivism liberalized. Philosophical Review, 102, 5984.CrossRefGoogle Scholar
Weir, A. (1998). Naïve set theory is innocent! Mind, 107, 763798.CrossRefGoogle Scholar
Weston, T. (1977). The continuum hypothesis is independent of second-order ZF. Notre Dame Journal of Formal Logic, 18, 499503.CrossRefGoogle Scholar
Woodin, H. (1999). The Axiom of Determinacy, Forcing Axioms, and the Non-Stationary Ideal. Berlin: Walter de Gruyter and Co.CrossRefGoogle Scholar
Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16, 2947.CrossRefGoogle Scholar