Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T20:16:00.274Z Has data issue: false hasContentIssue false

HUME’S PRINCIPLE, BEGINNINGS

Published online by Cambridge University Press:  14 February 2011

ALBERT VISSER*
Affiliation:
Department of Philosophy, Utrecht University
*
*DEPARTMENT OF PHILOSOPHY, UTRECHT UNIVERSITY, HEIDELBERGLAAN 8, 3584 CS UTRECHT, THE NETHERLANDS, E-mail:[email protected]

Abstract

In this note we derive Robinson’s Arithmetic from Hume’s Principle in the context of very weak theories of classes and relations.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Burgess, J. (2005). Fixing Frege. Princeton Monographs in Philosophy. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Feferman, S., & Vaught, R. L. (1959). The first order properties of products of algebraic systems. Fundamenta Mathematicae, 47, 57103.CrossRefGoogle Scholar
Linnebo, Ø. (2004). Predicative fragments of Frege arithmetic. Bulletin of Symbolic Logic, 10(2), 153174.CrossRefGoogle Scholar
Nelson, E. (1986). Predicative Arithmetic. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Smoryński, C. (1991). Logical Number Theory I, an Introduction. Universitext. New York, NY: Springer.Google Scholar
Solovay, R. M. (1976). Interpretability in Set Theories. Unpublished letter to P. Hájek. Available from: http://www.cs.cas.cz/~hajek/RSolovayZFGB.pdf.Google Scholar
Švejdar, V. (2007). An interpretation of Robinson’s Arithmetic in Grzegorczyk’s weaker variant. Fundamenta Informaticae, 81, 347354.Google Scholar
Visser, A.. (2009). Cardinal arithmetic in the style of Baron von Münchhausen. Review of Symbolic Logic, 2(3), 570589. doi: 10.1017/S1755020309090261.CrossRefGoogle Scholar