Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T01:22:12.917Z Has data issue: false hasContentIssue false

DE ZOLT’S POSTULATE: AN ABSTRACT APPROACH

Published online by Cambridge University Press:  02 September 2019

EDUARDO N. GIOVANNINI
Affiliation:
CONICET AND UNIVERSIDAD NACIONAL DEL LITORAL IHUCSO LITORAL BV. PELLEGRINI 2750 SANTA FE, S3000, ARGENTINA E-mail: [email protected]
EDWARD H. HAEUSLER
Affiliation:
CNPQ AND PONTIFICAL CATHOLIC UNIVERSITY OF RIO DE JANEIRO DEPT DE INFORMÁTICA RUA MARQUES DE SÃO VICENTE, 225, GÁVEA RIO DE JANEIRO, CEP22451-300, BRAZIL E-mail: [email protected]
ABEL LASSALLE-CASANAVE
Affiliation:
CNPQ AND FEDERAL UNIVERSITY OF BAHIA RUA PROFESSOR ARISTÍDES NOVIS – FEDERAÇÃO SALVADOR, BA 40226-365, BRAZIL E-mail: [email protected]
PAULO A. S. VELOSO
Affiliation:
CNPQ AND COPPE, FEDERAL UNIVERSITY OF RIO DE JANEIRO COPPE-PESC, AVENIDA HORÁCIO MACEDO 2030 CENTRO DE TECNOLOGIA, BLOCO H, SALA 319 CIDADE UNIVERSITÁRIA, CEP: 21941-914, BRAZIL E-mail: [email protected]

Abstract

A theory of magnitudes involves criteria for their equivalence, comparison and addition. In this article we examine these aspects from an abstract viewpoint, by focusing on the so-called De Zolt’s postulate in the theory of equivalence of plane polygons (“If a polygon is divided into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon”). We formulate an abstract version of this postulate and derive it from some selected principles for magnitudes. We also formulate and derive an abstract version of Euclid’s Common Notion 5 (“The whole is greater than the part”), and analyze its logical relation to the former proposition. These results prove to be relevant for the clarification of some key conceptual aspects of Hilbert’s proof of De Zolt’s postulate, in his classical Foundations of Geometry (1899). Furthermore, our abstract treatment of this central proposition provides interesting insights for the development of a well-behaved theory of compatible magnitudes.

Type
Research Article
Copyright
© Association for Symbolic Logic, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Amaldi, U. (1900). Sulla teoria dell’equivalenza. In Enriques, F., editor. Questioni riguardanti la geometria elementare. Bologna: Ditta Nicola Zanichelli, pp. 103142.Google Scholar
Andreotti, A. (1949). Sulla proposizione di De Zolt pei poliedri. Bollettino dell’Unione Matematica Italiana, 4(3), 6875.Google Scholar
Arana, A. & Mancosu, P. (2012). On the relationship between plane and solid geometry. The Review of Symbolic Logic, 5(2), 294353.CrossRefGoogle Scholar
Bernays, P. (1971). Remarks on the Theory of Plane Areas. In Hilbert, D. Foundations of Geometry. Supplement III. La Salle, IL: Open Court, pp. 207214.Google Scholar
Biasi, G. (1894). Ancora sulla equivalenza dei poligoni. Periodico di matematica per l’insegnamento secondario, 9, 8587.Google Scholar
Boltianskii, V. (1978). Hilbert’s Third Problem. Washington: Winston & Sons.Google Scholar
De Zolt, A. (1881). Principii della eguaglianza di poligoni preceduti da alcuni cenni critici sulla teoria della equivalenza geometrica. Milano: Briola.Google Scholar
Ehrlich, P. (2006). The rise of non-Archimedean mathematics and the roots of a misconception I: The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences, 60, 1121.CrossRefGoogle Scholar
Enriques, F. & Amaldi, U. (1903). Elementi di geometrie ad uso delle scuole secondarie superiori. Bologna: Ditta Nicola Zanichelli.Google Scholar
Frei, G. (1970). Beiträge zur axiomatischen Inhaltstheorie. Mathematische Annalen, 187, 220240.CrossRefGoogle Scholar
Hadwiger, H. (1957). Vorlesungen über Inhalt, Oberfläche und Isometrie. Heidelberg: Springer.CrossRefGoogle Scholar
Hale, B. (2000). Reals by abstraction. Philosophia Mathematica, 8(3), 100123.CrossRefGoogle Scholar
Hartshorne, R. (2000). Geometry: Euclid and Beyond. New York: Springer.CrossRefGoogle Scholar
Heath, T. (1956). The Thirteen Books of Euclid’s Elements (second edition) Vols. I–III. New York: Dover Publications. Translation with introduction and commentary from the text of Heiberg.Google Scholar
Hilbert, D. (1899). Grundlagen der Geometrie. Festschrift zur Feier der Enthüllung des Gauss-Weber Denkmals in Göttingen. Herausgegeben von dem Fest–Commitee. Leipzig: Teubner.Google Scholar
Hilbert, D. (1971). Foundations of Geometry. La Salle: Open Court. Translated by L. Unger from the 10th German Edition.Google Scholar
Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass. Berichten der mathematisch–physischen Classe der Königl. Sächs. Gesellschaft der Wissenschaften zu Leipzig, 53, 164.Google Scholar
Huntington, E. V. (1911). The fundamental propositions of algebra. In Young, J. W. A., editor. Monographs on Topics of Modern Mathematics. New York: Longmans, pp. 149207.Google Scholar
Killing, W. (1898). Einführung in die Grundlagen der Geometrie. Zweiter Band. Paderborn: Ferdinand Schöningh.Google Scholar
Lazzeri, G. (1895). Sulla teoria dell’equivalenza geometrica. Periodico di matematica per l’insegnamento secondario, 4, 7793.Google Scholar
Łomnicki, A. (1919). O układach zasad koniecznych i dostatecznych, służa̧cych do definicyi pojȩcia wielkości. (Sur les systèmes de principes, nécessaires et suffisants servant à la définition de la notion de grandeur.) Wiadomości matematyczne, 23, 3770.Google Scholar
Łomnicki, A. (1922). O zasadzie dysjunkcyi w logistyce i matematyce. Ruch filozoficzny, 6(1921–1922), 144146. The title means, “On the principle of disjunction in logic and mathematics.”Google Scholar
McFarland, A., McFarland, J., & Smith, J. T. (editors). (2014). Alfred Tarski: Early Work in Poland – Geometry and Teaching. Berlin: Birkhäuser.CrossRefGoogle Scholar
Rausenberger, O. (1893). Das Grundproblem der Flächen- und Rauminhaltlehre. Mathematische Annalen, 43, 275284.CrossRefGoogle Scholar
Schatunowsky, S. (1903). Über den der Rauminhalt Polyeder. Mathematische Annalen, 57, 496508.CrossRefGoogle Scholar
Schur, F. (1892). Über den Flächeninhalt geradlinig begrenzter ebener Figuren. Sitzungsberichte der Dorpater Naturforschenden Gesellschaft, 10, 26.Google Scholar
Sencer, S. (1938). Axiomatische Theorie der Rauminhalte. Dissertation an der Universität Leipzig bei van der Waerden. Leipzig: Moltzen.Google Scholar
Sierpiński, W. (1952). General Topology. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Stein, H. (1990). Eudoxos and Dedekind: On the ancient Greek theory of ratios and its relation to the modern mathematics. Synthèse, 84, 163211.Google Scholar
Stolz, O. (1885). Vorlesungen über allgemeine Arithmetik. Erster Theil: Allgemeines und Arithmetik der reellen Zahlen. Leipzig: Teubner.Google Scholar
Stolz, O. (1894). Die eben Vielecke und die Winkel mit Einschluss der Berührung-Winkel als Systeme von absoluten Grössen. Monatshefte für Mathematik und Physik, 5, 233240.CrossRefGoogle Scholar
Tarski, A. (1924). On the equivalence of polygons. In McFarland, A., McFarland, J., and Smith, J. T., editors. Alfred Tarski: Early Work in Poland - Geometry and Teaching (2014). Berlin: Birkhäuser, pp. 7091.Google Scholar
Tarski, A. & Givant, S. R. (1999). Tarski’s system of geometry. Bulletin of Symbolic Logic, 5, 175214.CrossRefGoogle Scholar
Veronese, G. (1894/1895). Dimostrazione della proposizione fondamentale dell’equivalenza delle figure. Atti del Regio Istituto Veneto di Scienze, Lettere ed Arti, 7(6), 421437.Google Scholar
Volkert, K. (1999). Die Lehre vom Flächeninhalt ebener Polygone: einige Schritte in der Mathematisierung eines anschaulichen Konzeptes. Mathematische Semesterberichte, 46, 128.CrossRefGoogle Scholar