Hostname: page-component-cc8bf7c57-llmch Total loading time: 0 Render date: 2024-12-11T22:13:13.507Z Has data issue: false hasContentIssue false

BOLZANO’S CONCEPT OF GROUNDING (ABFOLGE) AGAINST THE BACKGROUND OF NORMAL PROOFS

Published online by Cambridge University Press:  03 July 2013

ANTJE RUMBERG*
Affiliation:
Utrecht University
*
*DEPARTMENT OF PHILOSOPHY, UTRECHT UNIVERSITY, UTRECHT, THE NETHERLANDS E-mail: [email protected]

Abstract

In this paper, I provide a thorough discussion and reconstruction of Bernard Bolzano’s theory of grounding and a detailed investigation into the parallels between his concept of grounding and current notions of normal proofs. Grounding (Abfolge) is an objective ground-consequence relation among true propositions that is explanatory in nature. The grounding relation plays a crucial role in Bolzano’s proof-theory, and it is essential for his views on the ideal buildup of scientific theories. Occasionally, similarities have been pointed out between Bolzano’s ideas on grounding and cut-free proofs in Gentzen’s sequent calculus. My thesis is, however, that they bear an even stronger resemblance to the normal natural deduction proofs employed in proof-theoretic semantics in the tradition of Dummett and Prawitz.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Aristotle. (1994). Posterior Analytics (second edition). Oxford: Oxford University Press.Google Scholar
Berg, J. (1962). Bolzano’s Logic. Uppsala, Sweden: Almqvist & Wiksell.Google Scholar
Berg, J. (1988). Einleitung des Herausgebers. In: Winter, E., Berg, J., Kambartel, F., Louzil, J., and van Rootselaar, B., editors. Bernard Bolzano-Gesamtausgabe, I, 12/2. Stuttgart-Bad Cannstatt: Frommann-Holzboog, pp. 922.Google Scholar
Betti, A. (2010). Explanation in metaphysics and Bolzano’s theory of ground and consequence. Logique et Analyse, 211, 281316.Google Scholar
Betti, A. (2012). Bolzano’s universe: truth, logic and metaphysics. In: Haaparanta, L., and Koskinen, H. J., editors. Categories of Being: Essays on Metaphysics and Logic. Oxford: Oxford University Press, pp. 167190.Google Scholar
Bolzano, B. (1837). Dr. B. Bolzanos Wissenschaftslehre: Versuch einer ausführlichen und größtentheils neuen Darstellung der Logik mit stetiger Rücksicht auf deren bisherige Beareiter. Bände 1–4. Sulzbach: Seidelsche Buchhandlung. English translation by Paul Rusnock and Rolf George. Unpublished.Google Scholar
Bolzano, B. (1981). Von der Mathematischen Lehrart. In: Berg, J., editor. Stuttgart: Friedrich Frommann-Holzboog. English translation: On the Mathematical Method. In: Rusnock, P., and George, R., editors. (2004). On the Mathematical Method and Correspondence with Exner. Amsterdam/New York: Rodopi.Google Scholar
Buhl, G. (1961). Ableitbarkeit und Abfolge in der Wissenschaftslehre Bolzanos. In: Heidemann, I., editor. Kantstudien Ergänzungshefte, Vol. 83. Köln, Germany: Kölner Universitätsverlag.Google Scholar
Cellucci, C. (1992). Bolzano and multiple-conclusion logic. In: Bolzano’s Wissenschaftslehre 1837-1987. International Workshop. Biblioteca di Storia della Scienza, 31. Florenz, pp. 179189.Google Scholar
Centrone, S. (2011). Begründungen bei Bolzano und beim frühen Husserl. Zeitschrift für philosophische Forschung, 65, 527.Google Scholar
Centrone, S. (2012). Das Problem der apagogischen Beweise in Bolzanos Beyträgen und seiner Wissenschaftslehre. History and Philosophy of Logic, 33, 127157.Google Scholar
Christian, C. (1974). Logische Wahrheit, logische Folge und Abfolge im Bolzanoschen Sinn. In: Sitzungsberichte der Österreichischen Akademie der Wissenschaften. Philosophisch-Historische Klasse, 293, 5. Abhandlung. Bolzano Symposion: “Bolzano als Logiker”. Wien, pp. 4662.Google Scholar
Correira, F., & Schnieder, B. (2012). Metaphysical Grounding: Understanding the Structure of Reality. Cambridge: Cambridge University Press.Google Scholar
Dummett, M. (1991). The Logical Basis of Metaphysics. London: Duckworth.Google Scholar
Fine, K. (2012). A guide to ground. In: Correira & Schnieder (2012), pp. 3780.Google Scholar
Gentzen, G. (1935). Untersuchungen über das logische Schließen. Mathematische Zeitschrift, 39, 176210, 405–431. English Translation: Investigations into logical deduction. American Philosophical Quarterly, 1, 288–306(1964); 2, 204–218, (1965).Google Scholar
Gentzen, G. (1936). Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493565.CrossRefGoogle Scholar
Künne, W. (1997). Propositions in Bolzano and Frege. Grazer Philosophische Studien, 53, pp. 203240.Google Scholar
Lapointe, S. (2011). Bolzano’s Theoretical Philosophy: An Introduction. Houndmills, UK: Palgrave Macmillan.Google Scholar
Mancosu, P. (1999). Bolzano and Cournot on mathematical explanation. Revue d’Histoire des Sciences, 52, 429455.CrossRefGoogle Scholar
Morscher, E. (2013). Bernard Bolzano. In: Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Spring 2013 Edition). http://plato.stanford.edu/archieves/spr2013/entries/bolzano/.Google Scholar
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Stockholm, Sweden: Almqvist & Wiksell.Google Scholar
Prawitz, D. (1974). On the Iidea of a general proof theory. Synthese, 27, 6377.Google Scholar
Prawitz, D. (2005). Logical Cconsequence from a Cconstructivist point of view. In: Shapiro, S., editor. The Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 671695.Google Scholar
Prawitz, D. (2006). Meaning approached via proofs. Synthese, 148, 507524.CrossRefGoogle Scholar
Roski, S., & Rumberg, A. (2013). Simplicity and economy in Bolzano’s theory of grounding. Work in progress.Google Scholar
Rumberg, A. (2009). Ableitbarkeit und Abfolge bei Bernard Bolzano vor dem Hintergrund des modelltheoretischen und beweistheoretischen Folgerungsbegriffs. M.A. thesis. Department of History and Philosophy, University of Tübingen. Unpublished.Google Scholar
Rusnock, P., & Burke, M. (2010). Etchemendy and Bolzano on logical consequence. History and Philosophy of Logic, 31, 329.Google Scholar
Schnieder, B. (2011). A logic for ‘because’. The Review of Symbolic Logic, 4, 444465.Google Scholar
Schnieder, B. (2013). Bolzano on causation and grounding. Journal of the History of Philosophy (forthcoming).Google Scholar
Scholz, H. (1937). Die Wissenschaftslehre Bolzano’s. Eine Jahrhundert-Betrachtung. Abhandlungen der Fries’schen Schule. New Series, 6, 399472.Google Scholar
Schroeder-Heister, P., & Contu, P. (2005). Folgerung. In: Spohn, W., Schroeder-Heister, P., and Olsson, E., editors. Logik in der Philosophie. Heidelberg, Germany: Synchron Wissenschaftsverlag, pp. 247276.Google Scholar
Schroeder-Heister, P. (2006). Validity concepts in proof-theoretic semantics. Synthese, 148, 525571.Google Scholar
Schroeder-Heister, P. (2008). Proof-theoretic versus model-theoretic consequence. In: Pelis, M., editor. The Logica Yearbook 2007. Prague, Czech Republic: Filosofia, pp. 187200.Google Scholar
Schroeder-Heister, P. (2013). Proof-theoretic semantics. In: Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Spring 2013 Edition). http://plato.stanford.edu.archieves/spr2013/entries/proof-theoreticsemantics/.Google Scholar
Sebestik, J. (2012). Bolzano’s logic. In Zalta, E. N., editor. The Stanford Encyclopediaof Philosophy (Winter 2012 Edition). http://plato.stanford.edu/archieves/win2012/entries/bolzano-logic/.Google Scholar
Shapiro, S. (2005). Logical consequence, proof theory and model theory. In: Shapiro, S., editor. The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford: Oxford University Press, pp. 651670.Google Scholar
Siebel, M. (1996). Der Begriff der Abeitbarkeit bei Bolzano. Beiträge zur Bolzano-Forschung: Band 7. Sankt Augustin, Germany: Academia Verlag.Google Scholar
Siebel, M. (2002). Bolzano’s concept of consequence. The Monist, 85, 581601.Google Scholar
Sundholm, G. (2009). A century of judgement and inference: 1837–1936. In: Haaparanta, L., editor. The Development of Modern Logic. Oxford: Oxford University Press, pp. 263317.CrossRefGoogle Scholar
Sundholm, G. (2011). A garden of grounding trees. In: Cellucci, C., Grosholz, E. and Ippoliti, E. (eds.). Logic and Knowledge. Newcastle: Cambridge Scholars Publishing. 5774.Google Scholar
Tarski, A. (1936). Über den Begriff der logischen Folgerung. Actes du Congrés International du Philosophie Scientifique, 7, 111. English translation: On the concept of logical consequence. In: Tarski (1956), pp. 409–420.Google Scholar
Tarski, A. (1956). Logic, Semantics and Metamathematics. Oxford: Clarendon Press.Google Scholar
Tatzel, A. (2001). Proving and grounding: Bolzano’s theory of grounding and Gentzen’s normal proofs. History and Philosophy of Logic (to appear).Google Scholar
Tatzel, A. (2002). Bolzano’s theory of ground and consequence. Notre Dame Journal of Formal Logic, 43, 125.Google Scholar
Tatzel, A. (2003). Bolzano on grounding. In: Childers, T., and Majer, O., editors. The Logica Yearbook 2002. Prague, Czech Republic: Filosofia, pp. 245258.Google Scholar