Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T09:43:20.410Z Has data issue: false hasContentIssue false

AN “i” FOR AN i: SINGULAR TERMS, UNIQUENESS, AND REFERENCE

Published online by Cambridge University Press:  25 January 2012

STEWART SHAPIRO*
Affiliation:
Department of Philosophy, The Ohio State University and Department of Logic and Metaphysics, Arché Research Centre, University of St Andrews
*
*DEPARTMENT OF PHILOSOPHY, THE OHIO STATE UNIVERSITY, 350 UNIVERSITY HALL, 230, NORTH OVAL MALL, COLUMBUS, OH 43210, USA, DEPARTMENT OF LOGIC AND METAPHYSICS, ARCHÉ RESEARCH CENTRE, UNIVERSITY OF ST ANDREWS, ST ANDREWS, FIFE, SCOTLAND KY16 9AL. E-mail: [email protected]

Abstract

There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of −1 are indiscernible: anything true of one of them is true of the other. So how does the singular term ‘i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and the philosophy of language, I suggest that i functions like a parameter in natural deduction systems. This may require some rethinking of the role of singular terms, at least in mathematical languages.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Awodey, S. (2004). An answer to Hellman’s question: Does category theory provide a framework for mathematical structuralism? Philosophia Mathematica (III), 12, 5464.CrossRefGoogle Scholar
Bach, K. (1999). The semantics-pragmatics distinction: What it is and why it matters. In Turner, K., editor. The Semantics-Pragmatics Interface from Different Points of View. Oxford, UK: Elsevier, pp. 6584.Google Scholar
Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 4773.CrossRefGoogle Scholar
Black, M. (1952). The identity of indiscernibles. Mind, 61, 153164.CrossRefGoogle Scholar
Brandom, R. (1996). The significance of complex numbers for Frege’s philosophy of mathematics. Proceedings of the Aristotelian Society, 96, 293315.CrossRefGoogle Scholar
Breckenridge, Wylie, and Ofra, Magidor (2012), “Arbitrary reference”, Philosophical Studies, forthcoming.Google Scholar
Burgess, J. (1999). Review of Philosophy of Mathematics: Structure and Ontology. Notre Dame Journal of Formal Logic, 40, 283291.Google Scholar
Button, T. (2006). Realist structuralism’s identity crisis: A hybrid solution. Analysis, 66, 216222.CrossRefGoogle Scholar
Chihara, C. (1990). Constructibility and Mathematical Existence. Oxford, UK: Oxford University Press.Google Scholar
Elbourne, P. (2003). Indistinguishable participants. In Dekker, P., and van Rooig, R., editors. Proceedings of the fourteenth Amsterdam Colloquium. Amsterdam, The Netherlands: ILLC/Department of Philosophy, University of Amsterdam, pp. 105110.Google Scholar
Elbourne, P. (2005). Situations and Individuals. Cambridge, MA: MIT Press.Google Scholar
Fine, K. (1985). Reasoning with Arbitrary Objects. New York: Basil Blackwell.Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik, Breslau, Koebner; The Foundations of Arithmetic. Translated by Austin, J., second edition. New York: Harper, 1960.Google Scholar
Frege, G. (1976). Wissenschaftlicher Briefwechsel. Edited by Gabriel, G., Hermes, H., Kambartel, F., and Thiel, C.. Hamburg, Germany: Felix Meiner.CrossRefGoogle Scholar
Frege, G. (1980). Philosophical and Mathematical Correspondence. Oxford, UK: Basil Blackwell.Google Scholar
Geach, P. T. (1950). Russell’s theory of descriptions. Analysis, 10, 8488.Google Scholar
Heim, I. (1990). E-type pronouns and donkey anaphora. Linguistics and Philosophy, 13, 137177.CrossRefGoogle Scholar
Hellman, G. (1989). Mathematics without Numbers. Oxford, UK: Oxford University Press.Google Scholar
Hellman, G. (2001). Three varieties of mathematical structuralism. Philosophia Mathematica (III), 9, 184211.CrossRefGoogle Scholar
Hellman, G. (2003). Does category theory provide a framework for mathematical structuralism? Philosophia Mathematica (III), 11, 129157.CrossRefGoogle Scholar
Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig, Teubner; Foundations of Geometry. Translated by Townsend, E.. La Salle, IL: Open Court, 1959.Google Scholar
Hodges, W. (1997). A Shorter Model Theory. Cambridge, UK: Cambridge University Press.Google Scholar
Keränen, J. (2001). The identity problem for realist structuralism. Philosophia Mathematica (III), 3, 308330.CrossRefGoogle Scholar
Keränen, J. (2006). The identity problem for realist structuralism II: A reply to Shapiro. In MacBride (2006a), 146163.Google Scholar
Ketland, J. (2006). Structuralism and the identity of indiscernibles. Analysis, 66, 303315.Google Scholar
Kraut, R. (1980). Indiscernibility and ontology. Synthese, 44, 113135.Google Scholar
Ladyman, J. (2005). Mathematical structuralism and the identity of indiscernibles. Analysis, 65, 218221.Google Scholar
Leitgeb, H. (2007). Struktur und Symbol. In Schmidinger, H. M., and Sedmak, C., editors. Der Mensch: Ein “animal Symbolicum”?, Topologien Des Menschlichen 4. Darmstadt, Germany: Wissenschaftliche Buchgesellschaft, pp. 131147.Google Scholar
Leitgeb, H., & Ladyman, J. (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica (III), 16, 388396.Google Scholar
Lewis, D. (1979). Scorekeeping in a language game. Journal of Philosophical Logic, 8, 339359.Google Scholar
Linnebo, Ø. (2008). Structuralism and the notion of dependence. Philosophical Quarterly, 58, 5979.Google Scholar
MacBride, F. (2005). Structuralism reconsidered. In Shapiro, S. editor. Oxford Handbook of Philosophy of Mathematics and Logic. Oxford, UK: Oxford University Press, pp. 563589.CrossRefGoogle Scholar
MacBride, F. (editor) (2006a), Identity and modality. Oxford, U.K.: Oxford University Press.Google Scholar
MacBride, F. (2006b). What constitutes the numerical diversity of mathematical objects? Analysis, 66, 6369.Google Scholar
Martino, E. (2001). Arbitrary reference in mathematical reasoning. Topoi, 20, 6577.Google Scholar
Pettigrew, R. (2008). ‘ℕ’ and ‘i’: In favour of an aristotelian interpretation of mathematics. Philosophia Mathematica (III), 16, 310322.CrossRefGoogle Scholar
Priest, G. (2003). Meinongianism and the philosophy of mathematics. Philosophia Mathematica (III), 11, 315.Google Scholar
Priest, G. (2005). Towards Non-being. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Quine, W. V. O. (1982). Methods of Logic. Cambridge, MA: Harvard University Press.Google Scholar
Quine, W. V. O. (1986). Philosophy of Logic. second edition. Englewood Cliffs, NJ: Prentice-Hall.CrossRefGoogle Scholar
Roberts, C. (2002). Demonstratives as definites. In van Deemter, K., and Kibble, R., editors. Information Sharing: Reference and Presupposition in Language Generation and Interpretation. Stanford, California: CSLI Press, pp. 89196.Google Scholar
Roberts, C. (2003). Uniqueness in definite noun phrases. Linguistics and Philosophy, 26, 287350.Google Scholar
Roberts, C. (2004). Pronouns as definites. In Bezuidenhout, A., and Reimer, M., editors. Descriptions and Beyond. Oxford, UK: Oxford University Press, pp. 503543.Google Scholar
Russell, B. (1905). On denoting. Mind, 14, 479498.CrossRefGoogle Scholar
Russell, B. (1957). Mr. Strawson on referring. Mind, 66, 385389.Google Scholar
Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology. New York: Oxford University Press.Google Scholar
Shapiro, S. (2005). Categories, structures, and the Frege-Hilbert controversy: The status of meta-metamathematics. Philosophia Mathematica (III), 13, 6177.Google Scholar
Shapiro, S. (2006a). Structure and identity. In MacBride (2006a), 109145.Google Scholar
Shapiro, S. (2006b). The governance of identity. In MacBride (2006a), 164173.CrossRefGoogle Scholar
Shapiro, S. (2006c). Vagueness in Context. Oxford: Oxford University Press.Google Scholar
Shapiro, S. (2008). Identity, indiscernibility, and ante rem structuralism: The tale of i and −i. Philosophia Mathematica (III), 16, 285309.CrossRefGoogle Scholar
Simons, P. (1987). Frege’s theory of real numbers. History and Philosophy of Logic, 8, 2544.Google Scholar
Smullyan, R. (1995). First-Order Logic. New York: Dover.Google Scholar
Sorenson, R. (2001). Vagueness and Contradiction. Oxford, UK: Oxford University Press.Google Scholar
Stalnaker, R. C. (1999). Context and Content: Essays on Intentionality in Speech and Thought. Oxford, UK: Oxford University Press.Google Scholar
Strawson, P. F. (1950). On referring. Mind, 59, 320344.Google Scholar
Tennant, N. (1983). A defence of arbitrary objects, Proceedings of the Aristotelian Society, Supplementary Volume, 57, 7989.Google Scholar
van Dalen, D. (2004). Logic and Structure, fourth edition. New York: Springer.Google Scholar
Williamson, T. (1994). Vagueness. London: Routledge Publishing Company.Google Scholar