Article contents
AN ALGEBRAIC APPROACH TO INQUISITIVE AND $\mathtt {DNA}$-LOGICS
Published online by Cambridge University Press: 02 December 2021
Abstract
This article provides an algebraic study of the propositional system $\mathtt {InqB}$ of inquisitive logic. We also investigate the wider class of $\mathtt {DNA}$-logics, which are negative variants of intermediate logics, and the corresponding algebraic structures, $\mathtt {DNA}$-varieties. We prove that the lattice of $\mathtt {DNA}$-logics is dually isomorphic to the lattice of $\mathtt {DNA}$-varieties. We characterise maximal and minimal intermediate logics with the same negative variant, and we prove a suitable version of Birkhoff’s classic variety theorems. We also introduce locally finite $\mathtt {DNA}$-varieties and show that these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the lattice of extensions of $\mathtt {InqB}$ is dually isomorphic to the ordinal $\omega +1$ and give an axiomatisation of these logics via Jankov $\mathtt {DNA}$-formulas. This shows that these extensions coincide with the so-called inquisitive hierarchy of [9].1
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic
Footnotes
This article is based on [41].
References
BIBLIOGRAPHY
- 4
- Cited by