Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T05:31:50.420Z Has data issue: false hasContentIssue false

SIZE AND LOGIC

Published online by Cambridge University Press:  09 July 2009

DOV M. GABBAY*
Affiliation:
Department of Computer Science, King’s College London
KARL SCHLECHTA*
Affiliation:
Laboratoire d’Informatique Fondamentale de Marseille
*
*DEPARTMENT OF COMPUTER SCIENCE, KING’S COLLEGE LONDON, STRAND, LONDON WC2R 2LS, UK. E-mail:[email protected]
LABORATOIRE D’INFORMATIQUE FONDAMENTALE DE MARSEILLE, UMR 6166, CNRS AND UNIVERSITÉ DE PROVENCE, CMI, 39, RUE JOLIOT-CURIE, F-13453 MARSEILLE, CEDEX 13, FRANCE. E-mail:[email protected], [email protected], URL: http://www.cmi.univ-mrs.fr/~ks

Abstract

We show how to develop a multitude of rules of nonmonotonic logic from very simple and natural notions of size, using them as building blocks.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Ben-David, S., & Ben-Eliyahu, R. (1994). A modal logic for subjective default reasoning. In Abramsky, S., editor. Proceedings LICS-94. July 1994. Paris, France: IEEE Computer Science Press, pp. 477486.Google Scholar
Bezzazi, H., Makinson, D., & Perez, R. P. (1997). Beyond rational monotony: Some strong non-Horn rules for nonmonotonic inference relations. Journal of Logic and Computation, 7(5), 605631.CrossRefGoogle Scholar
Friedman, N., & Halpern, J. (1996). Plausibility measures and default reasoning. Journal of the ACM, 48, 12971304.Google Scholar
Gabbay, D., & Schlechta, K. (2009). Journal of applied nonclassical logic, Vol. 19/1. Hermes, Cachan, France, pp. 4495.Google Scholar
Hawthorne, J. (1996). On the logic of nonmonotonic conditionals and conditional probabilities. Journal of Philosophical Logic, 25(2), 185218.CrossRefGoogle Scholar
Hawthorne, J. (2007). Nonmonotonic conditionals that behave like conditional probabilities above a threshold. Journal of Applied Logic, 5(4), 625637.CrossRefGoogle Scholar
Hawthorne, J., & Makinson, D. (2007). The quantitative/qualitative watershed for rules of uncertain inference. Studia Logica, 86(2), 247297.CrossRefGoogle Scholar
Schlechta, K. (1990). Semantics for defeasible inheritance. In Aiello, L. G., editor. Proceedings ECAI 90. August, 1990, Stockholm, Sweden. Berlin: Springer, pp. 594597.Google Scholar
Schlechta, K. (1995). Defaults as generalized quantifiers. Journal of Logic and Computation, 5(4), 473494.CrossRefGoogle Scholar
Schlechta, K. (1997). Filters and partial orders. Journal of the Interest Group in Pure and Applied Logics, 5(5), 753772.Google Scholar