Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:31:19.448Z Has data issue: false hasContentIssue false

Transition to self-sufficient mixed crop–dairy farming systems

Published online by Cambridge University Press:  16 December 2013

Xavier Coquil*
Affiliation:
INRA UR 055 ASTER-Mirecourt, 662, Avenue Louis Buffet, F-88500, France INRA UMR 1273 METAFORT, Theix, F-63122 Saint-Genès-Champanelle, France
Pascal Béguin
Affiliation:
IETL, Université de Lyon 2, 86, rue Pasteur F-69365 Lyon cedex 07, France
Benoît Dedieu
Affiliation:
Departement SAD, INRA UR 1218, Theix, F-63122 Saint-Genès-Champanelle, France
*
*Corresponding author: [email protected]

Abstract

While plains favorable to agriculture are still dominated by specialized and intensive agriculture, self-sufficient mixed crop-dairy farming systems increasingly attract policy makers' and scientists' attention. Owing to their limited use of purchased inputs, they can contribute to reducing the environmental impact of agriculture. Furthermore, self-sufficient farming tends to be linked with a search for autonomy in decision-making, i.e., farmers developing their own technical reference framework. Such farming systems can thus also contribute to alternative development pathways of rural territories. In this paper, we analyze how ten intensive mixed crop–dairy farms have progressively evolved toward more self-sufficient and autonomous systems. Through formalizing farmers' transition in action, we identified 34 tools that the farmers implemented making them reflect on their farming system, shift socio-professional networks, reorganize work routines, and steer the evolution of their production practices. For example, they created temporary pastures in crop rotation, introduced rotational pastures, observed their herds to adjust their feed and keep the animals in good health, and they limited expenditures to manage their cash flow. Which tools were used and when they were used depends on what is meaningful to them at various stages of the transition. Our analysis of transitions in action has three original features: it is centered on the transition as perceived by the actors who experience and manage it; it proposes a long-term conceptualization of the dynamics of farming systems, based on the farmer's initiative and creativity; and it highlights tools implemented by farmers during the transition to self-sufficiency and autonomy.

Type
Themed Content: Integrated Crop–Livestock Systems
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Herrero, M., Thornton, P.K., Notenbaert, A.M., Wood, S., Msangi, S., Freeman, H.A., Bossio, D., Dixon, J., Peters, M., van de Steeg, J., Lynam, J., Parthasarathy Rao, P., Macmillan, S., Gerard, B., McDermott, J., Seré, C., and Rosegrant, M. 2010. Smart investments in sustainable food production: revisiting mixed crop–livestock systems. Science 327:822825.Google Scholar
2Cambino, M., Laisney, C., and Vert, J. 2012. Le monde Agricole en Tendances. Un Portrait Social Prospectif des Agriculteurs. Centre d'études et de prospective, SSP, ministère de l'Agriculture, de l'Alimentation, de la Pêche, de la Ruralité et de l'Aménagement du Territoire, Paris.Google Scholar
3Lemaire, G., Franzluebbers, A., Faccio Carvalho, P.C., Dedieu, B., and Herrero, M. 2012. Integrated Crop-Livestock Systems—A Way to Reach Compromise between Agricultural Production and Environmental Preservation? II Integrated Symposium on Integrated Crop-Livestock Systems 2012, Porto Alegre, Brazil.Google Scholar
4Bellon, S., Prache, S., Benoit, M., and Cabaret, J. 2009. Recherches en élevage biologique: Enjeux, acquis et développements. INRA Productions Animales 22:271284.CrossRefGoogle Scholar
5Vaarst, M., Weisbjerg, M.R., Kristensen, T., Thamsborg, S.M., White, A., Roderick, S., and Lockeretz, W. 2006. Animal health and nutrition in organic farming. In Kristiansen, P., Taji, A., and Reganold, J. (eds). Organic Agriculture. A global Perspective. Comstock Publishing Associates. Cornell University Press, Ithaca. p. 167185.CrossRefGoogle Scholar
6Deléage, E. 2004. Paysans de la parcelle à la planète: Socio-anthropologie du réseau agriculture durable. Edition Syllepse, Paris. p. 245.Google Scholar
7Alard, V., Béranger, C., and Journet, M. 2002. A la recherche d'une agriculture durable: Etude des systèmes herbagers économes en Bretagne. Paris.Google Scholar
8Le Rohellec, C., Mouchet, C., Boutin, M., and Brault, J. 2011. Analyse de l'efficacité économique et environnementale des systèmes laitiers herbagers économes et autonomes 2007–2010. 18ème Rencontres Recherches Ruminants, Paris. p. 297300.Google Scholar
9Veysset, P., Lherm, M., and Bébin, D. 2010. Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: Model-based analysis and forecasts. Agricultural Systems 103:4150.Google Scholar
10Garambois, N. and Devienne, S. 2012. Les systèmes herbagers économes du Bocage vendéen: Une alternative pour un développement agricole durable? Innovations Agronomiques 22:117134.Google Scholar
11Coquil, X., Beguin, P., and Dedieu, B. 2011. Systèmes de polyculture élevage laitiers évoluant vers l'AB: Un renforcement des interfaces cultures/élevage. SFER: les transversalités de l'agriculture biologique, Strasbourg, France. p. 17.Google Scholar
12Antop, M. 2005. Why landscapes of the past are important for the future? Landscape and Urban Planning 70(1):2134.Google Scholar
13Lamine, C. and Bellon, S. 2009. Conversion to organic farming: A multidimensional research object at the crossroads of agricultural and social sciences. A review. Agronomy for Sustainable Development 29:97112.Google Scholar
14Hill, S.B. and MacRae, R.J. 1995. Conceptual framework for the transition from conventional to sustainable agriculture. Journal of Sustainable Agriculture 7:8187.Google Scholar
15Béguin, P. and Rabardel, P. 2000. Designing for instrument mediated activity. Scandinavian Journal of Information Systems 12/2000:173190.Google Scholar
16Rabardel, P. and Béguin, P. 2005. Instrument mediated activity: From subject development to anthropocentric design. Theorical Issues in Ergonomics Science 6(5):429461.Google Scholar
17Béguin, P. 2006. In search of a unit of analysis for designing instruments. Artifact 1(1):3238.Google Scholar
18Engeström, Y. 1990. Working and Imagining: Twelve Studies in Activity Theory. Orienta Konsultit Oy, Helsinki.Google Scholar
19Ochanine, D. 1978. Le rôle des images opératives dans la régulation des activités de travail. Psychologie et Education 2:6372.Google Scholar
20Eisenhardt, K.M. 1989. Building theories from case study research. Academy of Management Review 14(4):532550.CrossRefGoogle Scholar
21Flyvbjerg, B. 2011. Case study. In Denzin, N.K. and Lincoln, Y.S. (eds). The Sage Handbook of Qualitative Research. 4th ed. Sage, Thousand Oaks, CA. p. 301316.Google Scholar
22David, A. 2004. Etudes de cas et généralisation scientifique en sciences de gestion. Revue Sciences de gestion 39:139166.Google Scholar
23Vertes, F., Delaby, L., Ruiz, L., Moreau, P., and Gascuel-Odoux, C., 2011. A Method for Co-defining and Assessing Mitigation Options, at Farm Scale, in Vulnerable Coastal Catchments. Rencontre Recherches Ruminants, December 6–7, Paris. p. 252.Google Scholar
24Coquil, X., Fiorelli, J.L., Blouet, A., Trommenschlager, J.M., Bazard, C., and Mignolet, C. 2011. Conception de systèmes de polyculture élevage laitiers en agriculture biologique: Synthèse de la démarche pas à pas centrée sur le dispositif expérimental INRA ASTER-Mirecourt. Rencontre Recherches Ruminants, December 6–7, Paris. p. 5760.Google Scholar
25Kaufman, J.C. 1991. L'entretien compréhensif: L'enquête et ses méthodes. Ed. Armand Colin, Paris. p. 78.Google Scholar
26Vermersch, P. 2010. L'entretien d'explicitation. ESF (eds), Issy-les-Moulineaux. p. 220.Google Scholar
27Pastré, P. 2009. Didactique professionnelle et conceptualisation dans l'action. In Barbier, J.M., Bourgeois, E., Chapelle, G., and Ruano-orba, J.C. (eds). Encyclopédie de la Formation. Presse Universitaire de France, Paris. p. 1236.Google Scholar
28Caens-Martin, S. 1999. Une approche de la structure conceptuelle d'une activité agricole: La taille de la vigne. Education permanente 139:99113.Google Scholar
29Caens-Martin, S. 2009. Concevoir un simulateur pour apprendre à gérer un système vivant à des fins de production: La taille de la vigne. In Pastré, P. (ed.). Apprendre par la simulation: de l'analyse du travail aux apprentissages professionnels. Octares, Toulouse. p. 375.Google Scholar
30Giboudeau, B. 2012. Les vaches nous parlent d'alimentation. Editions Obsalim. p. 366.Google Scholar
31Chantre, E., Cerf, M., and Le Bail, M. 2010. Diagnostic agronomique des trajectoires de changements de pratiques en vue de la réduction d'utilisation de pesticides en grande culture: Cas de la Champagne Berrichonne de l'Indre. Colloque SFER: La Réduction des Pesticides: Enjeux, Modalités et Conséquences. p. 18.Google Scholar
32Chantre, E. 2011. Apprentissages des agriculteurs vers la réduction d'intrants en grandes cultures: Cas de la Champagne Berrichonne de l'Indre dans les années 1985–2010. l'Institut des Sciences et Industries du Vivant et de l'Environnement. AgroParisTech, ABIES. p. 402.Google Scholar
33Capillon, A. 1993. Typologie des exploitations agricoles, contribution à l'étude regionale des problèmes techniques. Thèse de doctorat, Institut Agronomique Paris-Grignon. p. 349.Google Scholar
34Aubry, C., Capillon, A., and Servettaz, L. 1989. Diversité des systèmes de production du Noyonnais et leur sensibilité au milieu. Fertilité et systèmes de production, coll. Ecologie et Aménagement Rural. INRA, Paris. p. 102131.Google Scholar
35Landais, E. 1987. Recherches sur les systèmes d'élevage: Questions et perspectives. Document de travail: INRA—Département de recherches sur les Systèmes Agraires et le Développement.Google Scholar
36Holling, C.S. 2001. Understanding the complexity of economic, ecological, and social systems. Ecosystems 4:390405.Google Scholar
37Moulin, C.H., Ingrand, S., Lasseur, J., Madelrieux, S., Napoleone, M., Pluvinage, J., and Thenard, V. 2008. Comprendre et analyser les changements d'organisation et de conduite de l’élevage dans un ensemble d'exploitations: Propositions méthodologiques. In Dedieu, B., Chia, E., and Leclerc, B. (eds). L'élevage en mouvement. Flexibilité et adaptation des exploitations d'herbivores. Editions Quae, Versailles, FRA. p. 181196.Google Scholar
38Sebillotte, M. and Soler, L.G. 1990. Les processus de décision des agriculteurs. In Brossier, J., Vissac, B., and Le Moigne, J.L. (eds). Modélisation systémique et système agraire: Décision et organisation: Actes du séminaire du département de recherches sur les systèmes agraires et le développement (SAD). INRA, St-Maximin, France. p. 93117.Google Scholar
39Girard, N. and Hubert, B. 1999. Modelling expert knowledge with knowledge-based systems to design decision aids. The example of a knowledge-based model on grazing management. Agricultural Systems 59:123144.CrossRefGoogle Scholar
40Schwartz, Y. 2009. Produire des savoirs entre adhérence et désadhérence. In Beguin, P. and Cerf, M. (eds). Dynamique des Savoirs, Dynamique des Changements. Octares, Toulouse. p. 1528.Google Scholar
41Beguin, P. 2004. Monde, version des mondes et monde commun. Bulletin de Psychologie 57/1/469:4559.Google Scholar