Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:08:10.861Z Has data issue: false hasContentIssue false

Polyphenols, tannins and caffeine content and antioxidant activity of green teas coming from organic and non-organic production

Published online by Cambridge University Press:  20 December 2013

Renata Kazimierczak*
Affiliation:
Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
Ewelina Hallmann
Affiliation:
Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
Anna Rusaczonek
Affiliation:
Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Nowoursynowska 166, 02-787 Warsaw, Poland.
Ewa Rembiałkowska
Affiliation:
Department of Functional and Organic Food and Commodities, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
*
*Corresponding author: [email protected]

Abstract

Among infusions of green teabags and leafy green teas from organic and non-organic production systems we measured and compared the content of phenolic acids, flavonols and total polyphenols by spectrophotometry, the content of tannins by titration and the content of caffeine by high-performance liquid chromatography (HPLC). In addition, the antioxidant activity of the infusions was determined by spectrophotometry. The results obtained have shown that organic teas contained significantly more flavonols and tannins. However, the content of phenolic acids was higher in non-organic teas. The teas from organic and non-organic production did not differ in terms of total polyphenol content and antioxidant activity. There were no differences in leaf teas in relation to the teabags in contents of phenolic acids, tannins and total polyphenols. Organic teas had higher content of catechin C than the non-organic ones, but at the same time non-organic teas had more epigallocatechin 3-gallate (EGCG) in comparison to organic teas. Epigallocatechin (EGC) and epicatechin (EC) were not found to be different between the two groups of tea. Catechin was found to be significantly higher in teabags, while the EGCG was higher in leaf teas. The reason for this may be the oxidation of teabags, which have a greater exposed surface area. There was no appreciable effect of the form of tea on the content of tannins, caffeine, flavonols, phenolic acids, total polyphenols, EGC and EC as well as the antioxidant activity of the tea infusions examined.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. 2004. Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition 79(5):727747.Google Scholar
2Heaton, S. 2001. Organic Farming, Food Quality and Human Health: A Review of the Evidence. Soil Association Publication, Bristol.Google Scholar
3Benbrook, Ch. 2005. Elevating Antioxidant Levels in Food through Organic Farming and Food Processing. An Organic Centre State of Science Review. Available at Web site http://www.organic-center.org/tocpdfs/AntioxidantReport.pdf (accessed February 28, 2013).Google Scholar
4Brandt, K. and Mølgaard, J.P. 2001. Organic agriculture: Does it enhance or reduce the nutritional value of plant foods? Journal of the Science of Food and Agriculture 81:924931.Google Scholar
5Brandt, K., Leifert, C., Sanderson, R., and Seal, C.J. 2011. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Critical Reviews in Plant Sciences 30:177197.Google Scholar
6Worthington, V. 2001. Nutritional quality of organic versus conventional fruits, vegetables and grains. Journal of Alternative and Complementary Medicine 7/2:161173.CrossRefGoogle ScholarPubMed
7Bourne, D. and Prescott, J. 2002. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Critical Reviews in Food Science and Nutrition 42(1):134.Google Scholar
8Cichoń, Z. and Wierciak, E. 2005. Towaroznawcza charakterystyka herbaty. Wydawnictwo Akademii Ekonomicznej, Kraków, Polska.Google Scholar
9Hojden, B. 2000. Herbata zielona i jej właściwości lecznicze. Wiadomości Zielarskie 42(9):1415.Google Scholar
10Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 1999. Podstawy biologii komórki. Wprowadzenie do biologii molekularnej. Wydawnictwo Naukowe PWN, Warszawa, Polska.Google Scholar
11Muzolf, M. and Tyrakowska, B. 2007. Health benefits of green tea—a review. Polish Journal of Human Nutrition and Metabolism 34(3/4):12251229.Google Scholar
12Strzelecka, H., Kamińska, J., Kowalski, J., and Wawelska, E. 1978. Chemiczne metody badań roślinnych surowców leczniczych. Wydawnictwo Lekarskie PZWL, Warszawa, Polska.Google Scholar
13Singelton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(48):144158.Google Scholar
14Frankowski, M., Kowalski, A., Ociepa, A., Siepak, J., and Niedzielski, P. 2008. Caffeine levels in various caffeine-rich and decaffeinated coffee grades and coffee extracts marketed in Poland. Bromatologia i Chemia Toksykologiczna 41(1):2127.Google Scholar
15Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radical Biology and Medicine 26(9–10):12311237.Google Scholar
16Sikora, M., Klonowska, K., Hallmann, E., and Rembiałkowska, E. 2010. Nutritive quality of red beet roots from organic and conventional production. In Rembiałkowska, E. (ed.). The Impact of Organic Production Methods on the Vegetable Product Quality. Agencja Reklamowo-Wydawnicza A. Grzegorczyk, Warsaw. p. 209220.Google Scholar
17Hallman, E. and Rembiałkowska, E. 2008. Estimation of nutritive and sensory value of tomatoes and tomato juices from organic and conventional production. Journal of Research and Applications in Agricultural Engineering 53(2):8895.Google Scholar
18Caris-Veyrat, C., Amiot, M.J., Tyssandier, V., Grasselly, D., Buret, M., Mikolajczak, M., Guilland, J.C., Bouteloup-Demange, C., and Borel, P. 2004. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomato and derived purees consequence on antioxidant plasma status in humans. Journal of Agricultural and Food Chemistry 52:65036509.CrossRefGoogle ScholarPubMed
19Wierzejska, R. and Jarosz, M. 2006. Kawa, herbata a zdrowie. Wydawnictwo Borgis, Warszawa, Polska.Google Scholar
20Kazimierczak, R., Hallmann, E., and Rembiałkowska, E. 2007. Porównanie wartości odżywczej owoców wybranych odmian czarnej porzeczki z uprawy ekologicznej i konwencjonalnej. In Zbytek, Z. (ed.). Wybrane zagadnienia ekologiczne we współczesnym rolnictwie, 4. Wydawnictwo PIMR, Poznań. p. 130146.Google Scholar
21Rembiałkowska, E. and Hallmann, E. 2008. The changes of the bioactive compounds in pickled red pepper fruits from organic and conventional production. Journal of Research and Applications in Agricultural Engineering 53(4):5157.Google Scholar
22Rembiałkowska, E., Hallmann, E., and Rusaczonek, A. 2006. Influence of pasteurization process on bioactive substances content and antioxidant activity of apple pomace from organic and conventional cultivation. Journal of Research and Applications in Agricultural Engineering 51(2):144148.Google Scholar
23Hallman, E. and Rembiałkowska, E. 2006. Antioxidant compounds content in selected onion bulbs from organic and conventional cultivation. Journal of Research and Applications in Agricultural Engineering 51(2):4246.Google Scholar
24Cabrera, C., Artacho, R., and Giménez, R. 2006. Beneficial effects of green tea—a review. Journal of the American College of Nutrition 25(2):7999.Google Scholar
25Hallmann, E., Rusaczonek, A., and Rembiałkowska, E. 2007. The phenolic compounds content and antioxidant properties of the organic and conventional teas. In Proceedings of the ICPH 2007 3rd International Conference on Polyphenols and Health. Kyoto, p. 164165.Google Scholar
26Bryant, J.P., Chapin, F.S. III, and Klein, D.R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. OIKOS 40:357368.Google Scholar
27Coley, P.D., Bryant, J.P., and Chapin, F.S. III. 1985. Resource availability and plant antiherbivore defence. Science 230:895899.Google Scholar
28Lorio, P.L. Jr. 1986. Growth-differentiation balance: Basis for understanding southern pine beetle–tree interactions. Forest Ecology and Management 14:259273.Google Scholar
29Herms, D.A. and Mattson, W.J. 1992. The dilemma of plants: To grow or defend. Quarterly Review of Biology 67:283335.Google Scholar
30Asami, D.K., Hong, Y.J., Barrett, D.M., and Mitchell, A.E. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry 51(5):12371241.Google Scholar
31Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P., and Cappelloni, M. 2002. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus perscia L., and pear Pyrus communis L.). Journal of Agricultural and Food Chemistry 50(19):54585462.Google Scholar
32Rembiałkowska, E., Hallmann, E., Adamczyk, M., Lipowski, J., Jasińska, U., and Owczarek, L. 2006b. Wpływ procesów technologicznych na zawartość polifenoli ogółem oraz na potencjał przeciwutleniający przetworów (soku i kremogenu) uzyskanych z jabłek pochodzących z produkcji ekologicznej i konwencjonalnej. Żywność Nauka Technologia Jakość Supplement 46(1):121126.Google Scholar
33Fik, M. and Zawiślak, A. 2004. Porównanie właściwości przeciwutleniających wybranych herbat. Żywność Nauka Technologia Jakość 40(3):98104.Google Scholar
34Stańczyk, A., Skolimowska, U., and Wędzisz, A. 2008. Tannin contents in green and black tea grades and the bactericidal activity of the methanolic extracts. Bromatologia i Chemia Toksykologiczna 41(4):976980.Google Scholar
35Kłódka, D., Bońkowski, M., and Telesiński, A. 2008. Zawartość wybranych metyloksantyn i związków fenolowych w naparach różnych rodzajów herbat rozdrobnionych (dust i finnings) w zależności od czasu parzenia. Żywność Nauka Technologia Jakość 56(1):103113.Google Scholar
36Hicks, M.B., Hsieh, Y.-H., and Bell, L.N. 1996. Tea preparation and its influence on methyloxantine concentration. Food Research International 29(2–3):325330.Google Scholar
37Waszkiewicz-Robak, B. 2002. A comparison of caffeine and tannins content in green and black tea. Polish Journal of Human Nutrition and Metabolism 29:451455.Google Scholar
38Iso, H., Date, C., Wakai, K., Fukui, M., and Tamakoshi, A. 2006. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Annals of Internal Medicine 144(8):554562.Google Scholar
39Wang, H.F., Tsai, Y.S., Lin, L.M., and Ou, A.S. 2006. Comparison of bioactive compounds in GABA tea and green tea produced in Taiwan. Food Chemistry 96:648653.Google Scholar
40Dufresne, C. and Farnworth, E. 2000. Tea, Kombucha and Health: A review. Food Research International 33:409421.Google Scholar