Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T15:20:34.814Z Has data issue: false hasContentIssue false

Transition management for organic agriculture under citrus cultivation favors fungal diversity in soil

Published online by Cambridge University Press:  13 August 2018

Juliana Cristina Scotton*
Affiliation:
Mokiti Okada Foundation, Mokiti Okada Research Center, CP 033, 13537-000, Ipeúna, São Paulo, Brazil Environmental Studies Center – São Paulo State University, Av. 24 A, 1515, 13506-900, Rio Claro, São Paulo, Brazil
Sérgio Kenji Homma
Affiliation:
Mokiti Okada Foundation, Mokiti Okada Research Center, CP 033, 13537-000, Ipeúna, São Paulo, Brazil
Wesley Luiz Fialho Costa
Affiliation:
Mokiti Okada Foundation, Mokiti Okada Research Center, CP 033, 13537-000, Ipeúna, São Paulo, Brazil
Diego Fontebasso Pelizari Pinto
Affiliation:
Mokiti Okada Foundation, Mokiti Okada Research Center, CP 033, 13537-000, Ipeúna, São Paulo, Brazil
José Silvio Govone
Affiliation:
Environmental Studies Center – São Paulo State University, Av. 24 A, 1515, 13506-900, Rio Claro, São Paulo, Brazil
Derlene Attili-Angelis
Affiliation:
Environmental Studies Center – São Paulo State University, Av. 24 A, 1515, 13506-900, Rio Claro, São Paulo, Brazil Division of Microbial Resources, Research Center for Agricultural, Biological and Chemical Research Center, University of Campinas, 13148-218, Paulínia, São Paulo, Brazil
*
Author for correspondence: Juliana Cristina Scotton, E-mail: [email protected]

Abstract

The present international scenario recognizes organic agriculture as an innovative solution to reduce agrochemicals and practices that degrade the agroecosystem. Yet, the shift from an already well-established agricultural model to a relatively new one is a challenging task and requires further scientific support. This work investigated the influence of transitional management – TM (from conventional to organic agriculture) on the soil fungal community under citrus, in dry and rainy periods. From 2012 to 2015 on, an area in Mogi Guaçú, SP, Brazil was selected, and two treatments were installed: a conventional management (CM) system based on farming practices with agrochemicals and fertilizers use, and another, transition management (TM) based on a 25% reduction per year of the chemical substances used in CM, with soil conditioner bokashi introduced. The performance of the transition system was evaluated in the context of soil fertility and diversity index of fungal taxa, by plate culture isolation, through the richness of Margalef (Dmg), diversity of Shannon (H′) and reverse Simpson (D). Differences in the occurrence and frequency of Paecilomyces, greater under CM and Penicillium, greater under TM, highlighted the influence of the management system employed. Richness and diversity indices were higher under TM. Principal component analysis revealed that 49.9% of the differences in fungal diversity was due to the management system. Only 16.5% was a result of the season of sampling. Four years of reduction/replacement of chemical practices in TM was sufficient to modify and favor some soil fungal taxa and consequently their activity. This research brings promising results to organic agriculture initiatives with relevant results for a tropical climate area.

Type
Preliminary Report
Copyright
Copyright © Cambridge University Press 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, SB (1998) Fungos entomopatogênicos. In Alves, SB (ed.), Controle Microbiano de Insetos. Piracicaba, SP: FEALQ, pp. 289381.Google Scholar
Arundel, AV, Sterling, EM, Biggin, JH and Sterling, TD (1986) Indirect health effects of relative humidity in indoor environments. Environmental Health Perspectives 65, 351361.Google ScholarPubMed
Ballou, ER and Wilson, D (2016) The roles of zinc and copper sensing in fungal pathogenesis. Current Opinion in Microbiology 32, 128134.CrossRefGoogle ScholarPubMed
Bedini, S, Avio, L, Sbrana, C, Turrini, A, Migliorini, P, Vazzana, C and Giovannetti, M (2013) Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biology and Fertility of Soils 49, 781790.CrossRefGoogle Scholar
Boechat, CL, Santos, JAG and Accioly, AMA (2013) Net mineralization nitrogen and soil chemical changes with application of organic wastes with ‘Fermented Bokashi Compost’. Acta Scientiarum 35, 257264.Google Scholar
Borges, LR, Lazzari, SMN, Pimentel, IC and Vila Nova, MX (2011) Diversidade de fungos filamentosos em solo de monocultivo de erva-mate, Ilex paraguariensis St. Hil. Revista Acadêmica: Ciências Agrárias e Ambientais 9, 185194.CrossRefGoogle Scholar
Brasil (2003) Lei n° 10.831, de 23 de dezembro de 2003. Dispõe sobre a agricultura orgânica e dá outras providências. Diário Oficial da República Federativa do Brasil, Brasília, DF, 23 dez. 2003. Available at http://www.planalto.gov.br/ccivil_03/leis/2003/L10.831.htm (Accessed 21 March 2015). Google.Google Scholar
Brasil (2014) Ministério da Agricultura. Culturas: Citros. Available at http://www.agricultura.gov.br/vegetal/culturas/citrus (Accessed 20 March 2014). Google.Google Scholar
CDA – Coordenadoria de Defesa Agropecuária (2016) Dados da Citricultura do Estado de São Paulo, Relatório de Inspeção do Cancro Cítrico e HLB-Greening 2016. Available at http://www.defesa.agricultura.sp.gov.br/www/gdsv/index.php?action=dados Citricultura Paulista (Accessed 21 March 2016). Google.Google Scholar
Chandrashekar, MA, Pai, KS and Raju, NS (2014) Fungal diversity of rhizosphere soils in different agricultural fields of Nanjangud Taluk of Mysore District, Karnataka, India. International Journal of Current Microbiology and Applied Sciences 3, 559566.Google Scholar
Colwell, RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Version 9.1.0.Google Scholar
Costa, PMO, Souza-Motta, CM and Malosso, E (2012) Diversity of filamentous fungi in different systems of lande use. Springer 85, 195203.Google Scholar
Coutinho, FP, Cavalcanti, MAQ and Yano-Melo, AM (2010) Filamentous fungi isolated from the rhizosphere of melon plants (Cucumis melo L. cv. Gold Mine) cultivated in soil with organic amendments. Acta Botânica Brasílica 24, 292298.CrossRefGoogle Scholar
De Vries, FT, Liiri, ME, Bjørnlund, L, Bowker, MA, Christensen, S, Setala, HM and Bardgett, RD (2012) Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change 2, 276280.CrossRefGoogle Scholar
Domsch, KH, Gams, W and Anderson, TH (eds) (1993) Compendium of Soil Fungi. Eching: IHW-Verlag.Google Scholar
Efthymiou, A, Granlund, M, Müller-Stöver, DS and Jakobsen, I (2018) Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains. Soil Biology and Biochemistry 116, 139147.CrossRefGoogle Scholar
Ellouze, W, Taheri, AE, Bainard, LD, Yang, C, Bazghaleh, N, Navarro-Borrell, A, Hanson, K and Hamel, C (2014) Soil fungal resources in annual cropping systems and their potential for management. BioMed Research International 2014, 531824.CrossRefGoogle ScholarPubMed
EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (1997) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. (2ed). Rio de Janeiro, RJ: EMBRAPA-CNPS, 212 p.Google Scholar
Estruzani, CR and Cavichioli, FA (2016) Agricultura Orgânica no Brasil. Jales, SP: VIII Sintagro – Simpósio Nacional de Tecnologia em Agronegócio. 6 p. Available at http://www.fatecjales.edu.br/sintagro/images/anais/tematica2/agricultura-organica-no-brasil.pdf (Accessed 8 January 2018).Google Scholar
Ferreira, DF (2010) Programa de analises estatísticas (Statistical Analysis Software) e planejamento de experimentos – Sisvar 5.3. Lavras, MG: Editora UFLA.Google Scholar
Fischer, IH, Zanette, MM, Spósito, MB and Amorim, L (2011) Doenças pós colheita em laranja ‘Valencia’ e caracterização da população fúngica em pomares orgânicos e convencionais. Tropical Plant Pathology 36, 390399.CrossRefGoogle Scholar
Fischer, IH, Palharini, MCA, Spósito, MB and Amorim, L (2013) Doenças pós-colheita em laranja ‘Pêra’ produzida em sistema orgânico e convencional e resistência de Penicillium digitatum a fungicidas. Summa Phytopathologica 39, 2834.CrossRefGoogle Scholar
Fundecitrus – Fundo de Defesa da Citricultura (2017) Doenças e pragas. Pinta Preta. Available at http://www.fundecitrus.com.br/doencas/pintapreta/12 (Accessed 12 December 2017). Google.Google Scholar
Gaviria, C (1978) Normas Para Interpretar E Reportar a‘Standard’ em Placa. São Paulo, SP: Merck.Google Scholar
Gonçalves, JM, Souza, MDC, Rocha, RCC, Medeiros, RJ and Jacob, SC (2014) Macro and trace elements in edible mushrooms, shiitake, shimeji and cardoncello from Petrópolis, Rio de Janeiro, Brazil. Ciência Rural 44, 943949.CrossRefGoogle Scholar
Grantina, L, Kenigsvalde, K, Eze, D, Petrina, Z, Skrabule, I, Rostoks, N and Nikolajeva, V (2011 a) Impact of six-year-long organic cropping on soil microorganisms and crop disease suppressiveness. Žemdirbystė Agriculture 98, 399408.Google Scholar
Grantina, L, Seile, E, Kenigsvalde, K, Kasparinskis, R, Tabors, G, Nikolajeva, V, Jungerius, P and Muiznieks, I (2011 b) The influence of the land use on abundance and diversity of soil fungi: comparison of conventional and molecular methods of analysis. Environmental and Experimental Biology 9, 921.Google Scholar
Guijarro, B, Melgarejo, P, Torres, R, Lamarca, N, Usall, J and De Cal, A (2008) Penicillium frequentans population dynamics on peach fruits after its applications against brown rot in orchards. Journal of Applied Microbiology 104, 659671.CrossRefGoogle ScholarPubMed
Hammer, Ø, Harper, DAT and Ryan, PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 49.Google Scholar
Houbraken, J, Samson, RA and Frisvad, JC (2006) Byssochlamys: Significance of heat resistance and mycotoxin production. In Hocking, AD, Pitt, JI, Samson, RA and Thrane, U. Advances in Food Mycology: Advances in Experimental Medicine and Biology. Nova York, USA: Springer, pp. 211224.CrossRefGoogle Scholar
Hussain, S, Siddique, T, Saleem, M, Arshad, M and Khalid, A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in Agronomy 102, 159200.CrossRefGoogle Scholar
Jabbour, R and Barbercheck, ME (2009) Soil management effects on entomopathogenic fungi during the transition to organic agriculture in a feed grain rotation. Biological Control 51, 435443.CrossRefGoogle Scholar
Jangid, K, Williams, MA, Franzluebbers, AJ, Sanderlin, JS, Reeves, JH, Jenkins, MB, Endale, DM, Coleman, DC and Whitman, WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology & Biochemistry 40, 28432853.CrossRefGoogle Scholar
Kalia, A and Gosal, SK (2011) Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science 57, 569596.CrossRefGoogle Scholar
Kennedy, A (1999) Microbial diversity in agroecosystem quality. In Collins, W and Qualset, C (eds), Biodiversity in Agroecosystems. Washington: CRC, pp. 117.Google Scholar
Lange, L (2014) The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5, 463471.CrossRefGoogle ScholarPubMed
Lehman, RM, Cambardella, CA, Stott, DE, Acosta-Martinez, V, Manter, DK, Buyer, JS, Maul, JE, Smith, JL, Collins, HP, Halvorson, JJ, Kremer, RJ, Lundgren, JG, Ducey, TF, Lin, VL and Karlen, DL (2015) Understanding and enhancing soil biological health: the solution to reversing soil degradation. Sustainability 7, 9881027.CrossRefGoogle Scholar
Magurran, AE (2013) Medindo a Diversidade Biológica. Curitiba, PR: Universidade Federal do Paraná.Google Scholar
Malavolta, E, Prates, HS, Casale, H and Leão, HC (1994) Seja o doutor dos seus citros. Potafós, Piracicaba, SP: Informações Agronômicas, 65. 22 p.Google Scholar
Martinez, CO, Silva, CMMS, Fay, EF, Abakerli, RB, Maia, AHN and Durrant, LR (2008) The effects of moisture and temperature on the degradation of sulfentrazone. Geoderma 147, 5662.CrossRefGoogle Scholar
Mendes, IC, Reis Junior, FB, Hungria, M, Fernandes, MF, Chaer, GM, Mercante, FM and Zilli, JE (2011). Microbiologia do solo e sustentabilidade de sistemas agrícolas. In Faleiro, FG, Andrade, SRM and Reis Junior, FB (eds), Biotecnologia: Estado da Arte E Aplicações na Agropecuária. Planaltina, DF: Embrapa Cerrados, pp. 217244.Google Scholar
Moreira, FMS and Siqueira, JO (eds) (2006) Microbiologia e Bioquímica do Solo. Lavras, MG: Universidade Federal de Lavras.Google Scholar
Moreira, FMS, Cares, JE, Zanetti, R and Stürmer, SL (eds) (2013) O Ecossistema Solo. Lavras, MG: Universidade Federal de Lavras.Google Scholar
Nogueira, MA and Soares, CRFS (2010) Micorrizas arbusculares e elementos-traço. In Siqueira, JO, Souza, FA, Cardoso, EJBN and Tsai, SM (eds), Micorrizas: 30 Anos de Pesquisas no Brasil. Lavras, MG: Editora UFLA, pp. 475501.Google Scholar
Oliveira, LG, Cavalcanti, MAQ, Fernandes, MJS and Lima, DMM (2013) Diversity offilamentous fungi isolated from the soil in the semiarid area, Pernambuco, Brazil. Journal of Arid Environments 95, 4954.CrossRefGoogle Scholar
ONU – Organização das Nações Unidas (2015) Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável. 49 p. 2015. Available at https://nacoesunidas.org/pos2015/agenda2030/ (Accessed 23 January 2017). Google.Google Scholar
Petit, P, Lucas, EMF, Abreu, LM, Pfenning, LH and Takahashi, JA (2009) Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian Cerrado soil. Electronic Journal of Biotechnology 12, 19.Google Scholar
Pfenning, LH (2013) Fungos do Solo. In Moreira, FMS, Cares, JE, Zanetti, R and Sturmer, SL (eds), O Ecossistema Solo. Lavras, MG: Universidade Federal de Lavras, pp. 271288.Google Scholar
Pimm, SL (1984) The complexity and stability of ecosystems. Nature 307, 321326.CrossRefGoogle Scholar
Pinotti, MMZ, Santos, JCP, Klauberg Filho, O and Castro, RL (2011) Isolamento de Fungos benéficos de Solo associados ao manejo empregado em culturas de amora, framboesa e mirtilo no Sul do Brasil. Revista Brasileira de Agroecologia 6, 6780.Google Scholar
Postma-Blaauw, MB, De Goede, RGM, Bloem, J, Faber, JH and Brussaard, L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460473.CrossRefGoogle ScholarPubMed
Prade, CA, Matsumura, AT, Ott, AP and Porto, ML (2007) Diversidade de fungos do solo em sistemas agroflorestais de citrus com diferentes tipos de manejo no município de Roca Sales, Rio Grande do Sul, Brasil. Biociências 15, 7381.Google Scholar
Rahmann, G, Ardakani, MR, Barberi, P, Boehm, H, Canali, S, Chander, M, David, W, Dengel, L, Erisman, JW, Galvis-Martinez, AC, Hamm, U, Kahl, J, Köpke, U, Kühne, S, Lee, SB, Løes, AK, Moos, JH, Neuhof, D, Nuutila, JT, Olowe, V, Oppermann, R, Rembiałkowska, E, Riddle, J, Rasmussen, IA, Shade, J, Sohn, SM, Tadesse, M, Tashi, S, Thatcher, A, Uddin, N, Niemsdorff, PF, Wibe, A, Wivstad, M, Wenliang, W and Zanoli, R (2016) Organic agriculture 3.0 is innovation with research. Organic Agriculture 6, 129.Google Scholar
Reganold, JP and Wachter, JM (2016) Organic agriculture in the twenty-first century. Nature Plants 2, 18.CrossRefGoogle ScholarPubMed
Samson, RA, Houbraken, J, Thrane, U, Frisvad, JC and Andersen, B (2010) Food and Indoor Fungi. Utrecht: CBS KNAW Biodiversity Center.Google Scholar
Santos, VB, Araújo, ASF, Leite, LFC, Nunes, LAPL and Melo, WJ (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170, 227231.CrossRefGoogle Scholar
Santos, HG, Jacomine, PKT, Anjos, LHC, Oliveira, VA, Lumbreras, JF, Coelho, MR, Almeida, JA, Cunha, TJF and Oliveira, JB (eds) (2013) Sistema Brasileiro de Classificação de Solos. Brasília, DF: Embrapa.Google Scholar
Sethi, S and Gupta, S (2013) Impact of pesticides and biopesticides on soil microbial biomass carbon. Universal Journal of Environmental Research and Technology 3, 326330.Google Scholar
Sharma, S and Malaviya, P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecological Engineering 91, 419425.CrossRefGoogle Scholar
Slaba, M, Różalska, S, Bernat, P, Szewczyk, R, Piątek, MA and Długoński, J (2015) Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction. Bioresource Technology 197, 404409.CrossRefGoogle ScholarPubMed
Thies, JE and Grossman, JM (2006) The soil habitat and soil ecology. In Uphoff, N, Ball, A, Fernandes, E, Herren, H, Husson, O, Laing, M, Palm, CA, Pretty, JN, Sanchez, PA, Sanginga, N and Thies, J (eds), Biological Approaches to Sustainable Soil Systems. Boca Raton: CRC Press, pp. 5978.CrossRefGoogle Scholar
Usman, S, Kundiri, AM and Nzamouhe, M (2017) Effects of organophosphate herbicides on biological organisms in soil medium – A mini review. Journal of Ecology and Toxicology 1, 15.Google Scholar
van Raij, B, Andrade, JC, Cantarella, H and Quaggio, JA (2001) Análise Química Para Avaliação da Fertilidade de Solos Tropicais. Campinas, SP: Instituto Agronômico de Campinas.Google Scholar
Vann, M, Bennett, N, Fisher, L, Reberg-Horton, SC and Burrack, H (2017) Poultry feather meal application in organic flue-cured tobacco production. Agronomy Journal 109, 18.CrossRefGoogle Scholar
Vitti, GC and Cabrita, JRM (1998) Nutrição e adubação de citros (Boletim citrícola, 4). Jaboticabal, SP: Editora Funep, 31 p.Google Scholar
Webster, J and Weber, RWS (eds) (2007) Introduction to Fungi. New York, USA: Cambridge University Press.CrossRefGoogle Scholar