Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:03:04.433Z Has data issue: false hasContentIssue false

Tanniferous forage plants: Agronomic performance, palatability and efficacy against parasitic nematodes in sheep

Published online by Cambridge University Press:  25 February 2008

D.A. Häring
Affiliation:
Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland. Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland.
A. Scharenberg
Affiliation:
Agroscope Liebefeld-Posieux Research Station ALP, Tioleyre 4, CH-1725 Posieux, Switzerland. Institute of Animal Sciences, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland.
F. Heckendorn
Affiliation:
Research Institute of Organic Agriculture, FiBL, Ackerstrasse, CH-5070 Frick, Switzerland.
F. Dohme
Affiliation:
Agroscope Liebefeld-Posieux Research Station ALP, Tioleyre 4, CH-1725 Posieux, Switzerland.
A. Lüscher
Affiliation:
Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
V. Maurer
Affiliation:
Research Institute of Organic Agriculture, FiBL, Ackerstrasse, CH-5070 Frick, Switzerland.
D. Suter
Affiliation:
Agroscope Reckenholz-Tänikon Research Station ART, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
H. Hertzberg*
Affiliation:
Research Institute of Organic Agriculture, FiBL, Ackerstrasse, CH-5070 Frick, Switzerland. Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland.
*
*Corresponding author: [email protected]

Abstract

Tanniferous forage plants can have beneficial effects on ruminant productivity and health (improved protein supply, bloat safety and antiparasitic properties). However, condensed tannins can also lower palatability, voluntary feed intake and digestibility. The aim of our interdisciplinary project was to generate basic knowledge on plant management, feed palatability and the antiparasitic properties of tanniferous forage plants for their practical application in agronomy, focusing on their usefulness in controlling gastrointestinal nematodes in organic farming. We found that Onobrychis viciifolia (sainfoin), Lotus corniculatus (birdsfoot trefoil) and Cichorium intybus (chicory) were suitable for cultivation under the given temperate climatic conditions, whereas Lotus pedunculatus (big trefoil) was soon outcompeted by unsown species. Growing the tanniferous plant species in a mixture with Festuca pratensis (meadow fescue) rather than in a monoculture had the advantage of increasing total dry matter (DM) yield (especially in the case of tanniferous legumes) and of reducing the DM proportions of unsown species. However, due to dilution by non-tanniferous F. pratensis, the tannin concentrations of mixtures were clearly lower and the seasonal fluctuations in tannin concentrations greater than that of monocultures. Across species, tannin concentrations were highest for O. viciifolia, followed by L. corniculatus and very low for C. intybus. Palatability of all tanniferous forages was comparable to that of a ryegrass/clover mixture when fed as dried forage and, when offered as silage, palatability of O. viciifolia was clearly superior to that of the respective ryegrass/clover control. Administration of dried or ensiled O. viciifolia reduced parasite egg counts in feces of lambs co-infected with the gastrointestinal nematode species Haemonchus contortus and Cooperia curticei. We conclude that O. viciifolia is the most promising among the tested tanniferous forage plant species due to its suitability for cultivation, its high tannin concentration, its high palatability and its antiparasitic activity even in dried or ensiled form.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aerts, R.J., Barry, T.N., and Mcnabb, W.C. 1999. Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages. Agriculture, Ecosystems and Environment 75(1–2):112.CrossRefGoogle Scholar
Barry, T.N. and Mcnabb, W.C. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition 81(4):263272.CrossRefGoogle ScholarPubMed
Hoste, H., Jackson, F., Athanasiadou, S., Thamsborg, S.M., and Hoskin, S.O. 2006. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology 22(6):253261.CrossRefGoogle ScholarPubMed
Min, B.R., Barry, T.N., Attwood, G.T., and McNabb, W.C. 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology 106(1–4):319.CrossRefGoogle Scholar
Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. Journal of the Science of Food and Agriculture 86(13):20102037.CrossRefGoogle Scholar
Min, B.R., Fernandez, J.M., Barry, T.N., McNabb, W.C., and Kemp, P.D. 2001. The effect of condensed tannins in Lotus corniculatus upon reproductive efficiency and wool production in ewes during autumn. Animal Feed Science and Technology 92(3–4):185202.CrossRefGoogle Scholar
Ramirez-Restrepo, C. A., Barry, T.N., Lopez-Villalobos, N., Kemp, P.D., and McNabb, W.C. 2004. Use of Lotus corniculatus containing condensed tannins to increase lamb and wool production under commercial dryland farming conditions without the use of anthelmintics. Animal Feed Science and Technology 117(1–2):85105.CrossRefGoogle Scholar
Titus, C.H., Provenza, F.D., Perevolotsky, A., and Silanikove, N. 2000. Preferences for foods varying in macronutrients and tannins by lambs supplemented with polyethylene glycol. Journal of Animal Science 78(6):14431449.CrossRefGoogle ScholarPubMed
Provenza, F.D., Villalba, J.J., Dziba, L.E., Atwood, S.B., and Banner, R.E. 2003. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Ruminant Research 49(3):257274.CrossRefGoogle Scholar
10 Haslam, E. 1996. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of Natural Products 59(2):205215.CrossRefGoogle ScholarPubMed
11 Waterman, P.J. and Mole, S. 1994. Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, London.Google Scholar
12 Marles, M.A.S., Ray, H., and Gruber, M.Y. 2003. New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64(2):367383.CrossRefGoogle ScholarPubMed
13 Koupai-Abyazani, M.R., McCallum, J., Muir, A.D., Bohm, B.A., Towers, G.H.N., and Gruber, M.Y. 1993. Developmental changes in the composition of proanthocyanidins from leaves of sainfoin (Onobrychis viciifolia Scop) as determined by HPLC analysis. Journal of Agricultural and Food Chemistry 41(7):10661070.CrossRefGoogle Scholar
14 Häring, D.A., Suter, D., Amrhein, N., and Lüscher, A. 2007. Biomass allocation is an important determinant of the tannin concentration in growing plants. Annals of Botany 99(1):111120.CrossRefGoogle ScholarPubMed
15 Bryant, J.P., Chapin, F.S., and Klein, D.R. 1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40(3):357368.CrossRefGoogle Scholar
16 Coley, P.D., Bryant, J.P., and Chapin, F.S. 1985. Resource availability and plant antiherbivore defense. Science 230(4728):895899.CrossRefGoogle ScholarPubMed
17 Herms, D.A. and Mattson, W.J. 1992. The dilemma of plants—to grow or defend. Quarterly Review of Biology 67(3):283335.CrossRefGoogle Scholar
18 Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Quarterly Review of Biology 78(1):2355.CrossRefGoogle ScholarPubMed
19 Koricheva, J. 2002. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology 83(1):176190.CrossRefGoogle Scholar
20 Koricheva, J., Larsson, S., Haukioja, E., and Keinanen, M. 1998. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83(2):212226.CrossRefGoogle Scholar
21 Borreani, G., Peiretti, P.G., and Tabacco, E. 2003. Evolution of yield and quality of sainfoin (Onobrychis viciifolia Scop.) in the spring growth cycle. Agronomie 23(3):193201.CrossRefGoogle Scholar
22 Gebrehiwot, L., Beuselinck, R.B., and Roberts, C.A. 2002. Seasonal variations in condensed tannin concentration of three Lotus species. Agronomy Journal 94:10591065.CrossRefGoogle Scholar
23 Roberts, C.A., Beuselinck, P.R., Ellersieck, M.R., Davis, D.K., and McGraw, R.L. (1993). Quantification of tannins in birdsfoot trefoil germplasm. Crop Science 33(5):675679.CrossRefGoogle Scholar
24 Wen, L., Roberts, C.A., Williams, J.E., Kallenbach, R.L., Beuselinck, P.R., and Mcgraw, R.L. 2003. Condensed tannin concentration of rhizomatous and nonrhizomatous birdsfoot trefoil in grazed mixtures and monocultures. Crop Science 43(1):302306.CrossRefGoogle Scholar
25 Kirwan, L., Lüscher, A., Sebastià, M.T., Finn, J.A., Collins, R.P., Porqueddu, C., Helgadottir, A., Baadshaug, O.H., Brophy, C., Coran, C., Dalmannsdóttir, S., Delgado, I., Elgersma, A., Fothergill, M., Frankow-Lindberg, B.E., Golinski, P., Grieu, P., Gustavsson, A.M., Höglind, M., Huguenin-Elie, O., Iliadis, C., Jørgensen, M., Kadziuliene, Z., Karyotis, T., Lunnan, T., Malengier, M., Maltoni, S., Meyer, V., Nyfeler, D., Nykanen-Kurki, P., Parente, J., Smit, H.J., Thumm, U., and Connolly, J. 2007. Evenness drives consistent diversity effects in an intensive grassland system across 28 European sites. Journal of Ecology 95(3): 530539.CrossRefGoogle Scholar
26 Elgersma, A., Nassiri, M., and Schlepers, H. 1998. Competition in perennial ryegrass white clover mixtures under cutting. 1. Dry-matter yield, species composition and nitrogen fixation. Grass and Forage Science 53(4):353366.CrossRefGoogle Scholar
27 Baumont, R. 1996. Palatability and feeding behaviour in ruminants. A review. Annales De Zootechnie 45(5):385400.CrossRefGoogle Scholar
28 Provenza, F.D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. Journal of Range Management 48(1):217.CrossRefGoogle Scholar
29 Scott, L.L. and Provenza, F.D. 1999. Variation in food selection among lambs: effects of basal diet and foods offered in a meal. Journal of Animal Science 77(9):23912397.CrossRefGoogle ScholarPubMed
30 Jansman, A.J.M., Verstegen, M.W.A., Huisman, J., and Vandenberg, J.W.O. 1995. Effects of hulls of faba beans (Vicia faba L) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenous protein in ileal-digesta and feces of pigs. Journal of Animal Science 73(1):118127.CrossRefGoogle ScholarPubMed
31 Waghorn, G.C., Shelton, I.D., McNabb, W.C., and McCutcheon, S.N. 1994. Effects of condensed tannins in Lotus pedunculatus on its nutritive-value for sheep. 2. Nitrogenous aspects. Journal of Agricultural Science 123:109119.CrossRefGoogle Scholar
32 Min, B.R., Attwood, G.T., McNabb, W.C., Molan, A.L., and Barry, T.N. 2005. The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Animal Feed Science and Technology 121(1–2):4558.CrossRefGoogle Scholar
33 McNabb, W.C., Waghorn, G.C., Barry, T.N., and Shelton, I.D. 1993. The effect of condensed tannins in Lotus pedunculatus on the digestion and metabolism of methionine, cystine and inorganic sulfur in sheep. British Journal of Nutrition 70(2):647661.CrossRefGoogle ScholarPubMed
34 Coop, R.L. and Holmes, P.H. 1996. Nutrition and parasite interaction. International Journal for Parasitology 26(8–9):951962.CrossRefGoogle ScholarPubMed
35 Freeland, W.J., Calcott, P.H., and Geiss, D.P. 1985. Allelochemicals, minerals and herbivore population size. Biochemical Systematics and Ecology 13:195206.CrossRefGoogle Scholar
36 Waghorn, G.C., Shelton, I.D., and McNabb, W.C. 1994. Effects of condensed tannins in Lotus pedunculatus on its nutritive-value for sheep. 1. Nonnitrogenous aspects. Journal of Agricultural Science 123:99107.CrossRefGoogle Scholar
37 Salawu, M.B., Acamovic, T., Stewart, C.S., Hvelplund, T., and Weisbjerg, M.R. 1999. The use of tannins as silage additives: effects on silage composition and mobile bag disappearance of dry matter and protein. Animal Feed Science and Technology 82(3–4):243259.CrossRefGoogle Scholar
38 Ott, E.M., Aragón, A., and Gabel, M. 2005. Ensiling of tannin-containing sorghum grain. Proceedings of the 14th International Silage Conference, 3–6 July 2005, Belfast, UK. p. 178.Google Scholar
39 Waller, P.J. and Thamsborg, S.M. 2004. Nematode control in ‘green’ ruminant production systems. Trends in Parasitology 20(10):493497.CrossRefGoogle ScholarPubMed
40 Woolaston, R.R. and Baker, R.L. 1996. Prospects of breeding small ruminants for resistance to internal parasites. International Journal for Parasitology 26(8–9):845855.CrossRefGoogle ScholarPubMed
41 Eysker, M., Bakker, N., van der Hall, Y.A., van Hecke, I., Kooyman, F.N.J., van der Linden, D., Schrama, C., and Ploeger, H.W. 2006. The impact of daily Duddingtonia flagrans application to lactating ewes on gastrointestinal nematodes infections in their lambs in the Netherlands. Veterinary Parasitology 141(1–2):91100.CrossRefGoogle ScholarPubMed
42 Larsen, M. 1999. Biological control of helminths. International Journal for Parasitology 29(1):139146.CrossRefGoogle ScholarPubMed
43 Niezen, J.H., Charleston, W.A.G., Hodgson, J., Mackay, A.D., and Leathwick, D.M. 1996. Controlling internal parasites in grazing ruminants without recourse to anthelmintics: approaches, experiences and prospects. International Journal for Parasitology 26(8–9):983992.CrossRefGoogle ScholarPubMed
44 Coop, R.L. and Kyriazakis, I. 2001. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends in Parasitology 17(7):325330.CrossRefGoogle ScholarPubMed
45 Waller, P.J. 1997. Anthelmintic resistance. Veterinary Parasitology 72(3–4):391405.CrossRefGoogle ScholarPubMed
46 Molan, A.L., Meagher, L.P., Spencer, P.A., and Sivakumaran, S. 2003. Effect of flavan-3-ols on in vitro egg hatching, larval development and viability of infective larvae of Trichostrongylus colubriformis. International Journal for Parasitology 33(14):16911698.CrossRefGoogle ScholarPubMed
47 Heckendorn, F., Häring, D.A., Maurer, V., Zinsstag, J., Langhans, W., and Hertzberg, H. 2006. Effect of sainfoin (Onobrychis viciifolia) silage and hay on established populations of Haemonchus contortus and Cooperia curticei in lambs. Veterinary Parasitology 142(3–4):293300.CrossRefGoogle ScholarPubMed
48 Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. Wiley, New York.Google Scholar
49 Terrill, T.H., Rowan, A.M., Douglas, G.B., and Barry, T.N. 1992. Determination of extractable and bound condensed tannin concentrations in forage plants, protein-concentrate meals and cereal-grains. Journal of the Science of Food and Agriculture 58(3):321329.CrossRefGoogle Scholar
50 RAP (Swiss Federal Research Station for Animal Production and Dairy Products). 1999. Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer. Landwirtschaftliche Lehrmittelzentrale, Zollikofen.Google Scholar
51 Ben Salem, H., Nefzaoui, A., and Abdouli, H. 1994. Palatability of shrubs and fodder trees measured on sheep and dromedaries. 1. Methodological approach. Animal Feed Science and Technology 46(1–2):143153.CrossRefGoogle Scholar
52 Jacot, K.A., Lüscher, A., Nösberger, J., and Hartwig, U.A. 2000. The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant and Soil 225(1–2):201211.CrossRefGoogle Scholar
53 Heckendorn, F., Häring, D.A., Maurer, V., Senn, M., and Hertzberg, H. 2007. Individual administration of three tanniferous forage plants to lambs artificially infected with Haemonchus contortus and Cooperia curticei. Veterinary Parasitology 146:123134.CrossRefGoogle ScholarPubMed
54 Villalba, J.J., Provenza, F.D., and Bryant, J.P. 2002. Consequences of the interaction between nutrients and plant secondary metabolites on herbivore selectivity: benefits or detriments for plants? Oikos 97(2):282292.CrossRefGoogle Scholar
55 Kraus, T.E.C., Yu, Z., Preston, C.M., Dahlgren, R.A., and Zasoski, R.J. 2003. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Journal of Chemical Ecology 29(3):703730.CrossRefGoogle ScholarPubMed