Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T08:07:26.508Z Has data issue: false hasContentIssue false

Participatory breeding in the Peruvian highlands: Opportunities and challenges for promoting conservation and sustainable use of underutilized crops

Published online by Cambridge University Press:  13 May 2014

Gea Galluzzi*
Affiliation:
Bioversity International, Americas Regional Office, c/o CIAT, km 17 Recta Cali-Palmira, Colombia.
Rigoberto Estrada
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Andenes, Av. Micaela Bastidas 310-314, Cusco, Peru.
Vidal Apaza
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Illpa, Rinconada de Salcedo S/N, 468 Puno, Peru.
Mirihan Gamarra
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Andenes, Av. Micaela Bastidas 310-314, Cusco, Peru.
Ángel Pérez
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Santa Ana, Real N° 507, El Tambo, Huancayo, Peru.
Gilberto Gamarra
Affiliation:
Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Castilla N° 3909, El Tambo, Huancayo, Peru.
Ana Altamirano
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Canaan, Av. Abancay S/n Fundo Canaán Bajo, Ayacucho, Peru.
Gladys Cáceres
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Illpa, Rinconada de Salcedo S/N, 468 Puno, Peru.
Víctor Gonza
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Estación Experimental Andenes, Av. Micaela Bastidas 310-314, Cusco, Peru.
Ricardo Sevilla
Affiliation:
Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Apartado Postal 2791, Lima, Peru.
Isabel López Noriega
Affiliation:
Bioversity International, Via dei Tre Denari, 472/a 00057 Maccarese, Rome, Italy.
Matthias Jäger
Affiliation:
Bioversity International, Americas Regional Office, c/o CIAT, km 17 Recta Cali-Palmira, Colombia.
*
*Corresponding author: [email protected]

Abstract

Underutilized crops tend to harbor high levels of genetic diversity, be maintained on-farm in small-scale farming systems and be relatively neglected by formal research and development strategies, including breeding programs. While high genetic variability allows these crops to adapt to marginal environments, inappropriate management practices and reductions in population sizes in individual farmers’ plots may lead to productivity loss and poor harvests. This situation further limits their cultivation and use, notwithstanding the potential these crops may hold for diversification of agricultural systems, food security and market development. Peru hosts a wealth of native agrobiodiversity, which includes many underutilized crops. To improve their performance and promote their continued conservation and use, a participatory breeding program was developed on five underutilized crops of the Peruvian highlands; the breeding approach, based on a combination of evolutionary and participatory methods, is designed to achieve a balance between yield improvement and maintenance of genetic diversity. Preliminary results in quinoa and amaranth are encouraging, fostering further engagement of farmers by increasing availability of quality seed for downstream uses. However, methodological, financial and institutional issues need to be addressed for the effort to be expanded and upscaled. This paper provides an overall description of the initiative as well as a discussion on early results obtained in quinoa and amaranth, highlighting those aspects that make this approach particularly relevant for minor crops and identifying the opportunities and challenges for the initiative to move forward.

Type
Preliminary Reports
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 IAASTD. 2008. Agriculture at a Cross-roads. Global Report. Island Press, Washington, DC, USA.Google Scholar
2 Fowler, C. and Mooney, P. 1990. Shattering: Food, Politics, and the Loss of Genetic Diversity. University of Arizona Press, Tucson, USA.Google Scholar
3 Gonzalez, C. 2011. Climate change, food security, and agrobiodiversity: toward a just, resilient and sustainable food system. Fordham Environmental Law Review 22:493521.Google Scholar
4 Vellvé, R. 1992. Saving the Seed. Genetic Diversity and European Agriculture. Earthscan, London.Google Scholar
5 Teklu, Y. and Hammer, K. 2006. Farmer's perception and genetic erosion of tetraploid wheat landraces in Ethiopia. Genetic Resources and Crop Evolution 53:10991113.Google Scholar
6 PAR. 2011. Biodiversity for Food and Agriculture—Contributing to Food Security and Sustainability in a Changing World. Outcomes of an Expert Workshop held by FAO and the Platform on Agrobiodiversity Research from 14–16 April 2010 in Rome, Italy. Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
7 FAO. 2011. Save and Grow. A Policymakers Guide to the Sustainable Intensification of Smallholder Crop Production. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at Web site: http://www.fao.org/docrep/014/i2215e/i2215e.pdf (accessed May 1, 2014).Google Scholar
8 Brown, A. 2006. Genetic features of populations from stress-prone environments. In Jarvis, D., Mar, I., and Sears, L. (eds). Enhancing the use of Crop Genetic Diversity to Manage Abiotic Stress in Agricultural Production Systems. Proceedings of a Workshop, Budapest, Hungary, May 2005. Bioversity International, Rome, Italy. p. 210.Google Scholar
9 Kotschi, J. 2010. Reconciling agriculture with biodiversity and innovations in plant breeding. Gaia 19(1):2024.Google Scholar
10 FAO. 2010. Second Report on the State of the World's Plant Genetic Resources for Food and Agriculture. Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
11 Ceccarelli, S. and Grando, S. 2007. Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349360.Google Scholar
12 Altieri, M.A. and Merrick, L.C. 1987. In situ conservation of crop genetic resources through maintenance of traditional farming systems. Economic Botany 41:8696.Google Scholar
13 Padulosi, S., Hoeschle-Zeledon, I., and Bordoni, P. 2008. Minor crops and underutilized species: lessons and prospects. In Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J.M., Dulloo, M.E., and Turok, J. (eds). Crop Wild Relative Conservation and Use. CAB International, Wallingford, UK. p. 605624.Google Scholar
14 Suneson, C.A. 1956. An evolutionary plant breeding method. Agronomy Journal 48:188191.Google Scholar
15 Murphy, K., Lammer, D., Lyon, S., Brady, C., and Jones, S.S. 2005. Breeding for organic and low-input farming systems: an evolutionary-participatory breeding method for inbred cereal grains. Renewable Agriculture and Food Systems 20:4855.Google Scholar
16 Soliman, K.M. and Allard, R.W. 1991. Grain yield of composite cross populations of barley. Effects of natural selection. Crop Science 31:705708.Google Scholar
17 Thomas, G., Rousset, M., Pichon, M., Trottet, M., Doussinault, G., and Picard, E. 1991. Breeding methodology in wheat (Triticum aestivum L.). 1. Creation and study of a 16-parent artificial population. Agronomie 11:359368.Google Scholar
18 Qualset, C.O. 1975. Population structure and performance in wheat. In Gaul, H. (ed.). Barley Genetics III, Proceedings of the ‘Third International Barley Genetics Symposium’, Garching, Germany, 7–12 July 1975. Verlag Karl Theimig AG, Munich, Germany. p. 397.Google Scholar
19 Ceccarelli, S., Guimaraes, E.P., and Weltzien, E. (eds). 2009. Plant Breeding and Farmer Participation. Food and Agriculture Organization of the United Nations, Rome, Italy. p. 671.Google Scholar
20 Ceccarelli, S. 2009. Evolution, plant breeding and biodiversity. Journal of Agriculture and Environment for International Development 103(1/2):131145.Google Scholar
21 Cleveland, D.A. and Soleri, D. 2007. Farmer knowledge and scientist knowledge in sustainable agricultural development: ontology, epistemology and praxis. In Sillitoe, P. (ed.). Local Science versus Global Science: Approaches to Indigenous Knowledge in International Development. Berghahn Books, Oxford, UK. p. 211229.Google Scholar
22 CBD (Convention on Biological Diversity). Peru country profile. Available at Web site: http://www.cbd.int/countries/profile/?country=pe#status (verified October 21, 2012).Google Scholar
23 Vavilov, N.I. 1926. Studies on the origin of cultivated plants. Russian Bulletin of Applied Botany and Plant Breeding 14:245.Google Scholar
24 Harlan, J.R. 1971. Agricultural origins: centers and noncenters. Science 174:468474.Google Scholar
25 Pastor, S., Fuentealba, B., and Ruiz, M. 2008. Cultivos Subutilizados en el Perú. Análisis de las Políticas Públicas Relativas a su Conservación y Uso Sostenible. Sociedad Peruana de Derecho Ambiental (SPDA), Lima, Perú. p. 36.Google Scholar
26 INIA. 2010. Declaración del Foro ‘Aprovechando la agrobiodiversidad para superar la pobreza y mejorar la calidad de vida de la población’. Instituto Nacional de Innovación Agraria, Lima, Perú. Available at Web site: http://www.inia.gob.pe/notas/nota0601/DeclaracionForo.pdf (verified October 25, 2012).Google Scholar
27 Oscanoa, C., Vilchez, J., Narro, T., and Sevilla, R. 2004. Participatory Breeding and Decentralized Seed Production in Maize in the Central Highlands of Peru. Global Maize Genetic Resources Conservation, CIMMYT, El Batán, México.Google Scholar
28 Sevilla, R. 2008. Mejoramiento poblacional del Maíz en la Sierra. Proceedings of ‘Mejoramiento genético de plantas. I Simposio Internacional, investigación hacia un desarrollo sostenible’. La Molina University, Lima, Perú, 16–17 September 2008.Google Scholar
29 Bravo, R., Valdivia, R., Andrade, K., Padulosi, S., and Jäger, M. (eds). 2010. Granos Andinos. Avances, logros y Experiencias Desarrolladas en quinua, cañihua y kiwicha en Perú. Bioversity International, Rome, Italy.Google Scholar
30 Bonifacio, A. 2003. Chenopodium sp.: genetic resources, ethnobotany, and geographic distribution. Food Reviews International 19:17.Google Scholar
31 Balarezo, J.C., Camarena Mayta, F., Baudoin, J.P., Huaringa Joaquín, A., and Blas Sevillano, R. 2009. Evaluación agromorphológica y caracterización molecular de la ñuña (Phaseolus vulgaris L.). Idesia 27(1):2940.Google Scholar
32 Marshall, D.R. and Brown, A.H.D. 1975. Optimum sampling strategies in genetic conservation. In Frankel, O.H. and Hawkes, J.K. (eds). Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge, UK. p. 5380.Google Scholar
33 van Rheenen, H.A., Bhatti, S., and Rao, K.V.S. 1993. The Sustainable Preservation of Biodiversity in Self-Pollinated Plant Species: Sample Size and Collection Methodology. Plant Genetic Resources Newsletter. FAO/IPGRI, Rome, Italy. p. 14.Google Scholar
34 Agong, S.G. and Ayiecho, P.O. 1991. The rate of outcrossing in grain Amaranths. Plant Breeding 107(2):156160.Google Scholar
35 Ibarra-Perez, F.J., Ehdaie, B., and Waines, J.G. 1997. Estimation of outcrossing rate in common bean. Crop Science 37:6065.Google Scholar
36 Gnatowska, M., Świecicki, W.K., and Wolko, B. 1999. Preliminary data on the outcrossing rate in sweet Lupinus mutabilis . In van Santen, M.W.E., Weissmann, S., and Römer, P. (eds). Lupin, an ancient Crop for the New Millennium. Proceedings of the 9th International Lupin Conference, Klink/Muritz, Germany, 20–24 June 1999. International Lupin Association, New Zealand. p. 167168.Google Scholar
37 Ad Hoc Panel of the Advisory Committee on Technology Innovation, Board on Science and Technology for International Development, National Research Council. 1989. Tarwi. In The Lost Crops of the Incas: Little Known Plants of the Andes with Promise for Worldwide Cultivation. National Academies Press, Washington, DC. p. 180189.Google Scholar
38 Alvarez, A. 1993. Evaluación de técnicas de hibridación en el mejoramiento genético de la quinua (Chenopodium quinoa). Master thesis, La Molina University, Lima, Perú.Google Scholar
39 Padulosi, S. and Dulloo, E.M. 2012. Towards a viable system for monitoring agrobiodiversity on-farm: a proposed new approach for Red Listing of cultivated species. In Padulosi, S., Bergamini, N., and Lawrence, T. (eds). Proceeding of the international conference ‘On-farm conservation of neglected and underutilized species: status, trends and novel approaches to cope with climate change’, Friedrichsdorf, Frankfurt, 14–16 June 2011. Bioversity International, Rome, Italy.Google Scholar
40 Simmonds, N.W. 1993. Introgression and incorporation. Strategies for the use of crop genetic resources. Biological Reviews 68:539562.Google Scholar
41 Cooper, H.D., Spillane, C., and Hodgkin, T. 2001. Broadening the genetic base of crops: an overview. In Cooper, H.D., Spillane, C., and Hodgkin, T. (eds). Broadening the Genetic Base of Crop Production. CABI Publishing in cooperation with FAO and IPGRI, CAB International, Wallingford, UK. p. 123.Google Scholar
42 Borbor, M. 1992. Evaluación de componentes de rendimiento y características morfológicas de compuestos raciales de maíz en la Sierra del Perú. Master thesis, La Molina University, Lima, Perú.Google Scholar
43 Shukla, S.K. and Singh, I.S. 1999. Studies on mixing ability from uniblends and biblends of seven lentils cultivars. Lens Newsletter 26:1821.Google Scholar
44 Goldringer, I., Enjalbert, J., David, J., Paillard, S., Pham, J.L., and Brabant, P. 2001. Dynamic management of genetic resources: a 13-year experiment on wheat. In Cooper, H.D., Spillane, C., and Hodgkin, T. (eds). Broadening the Genetic Base of Crop Production. CABI Publishing in co-operation with FAO and IPGRI, CAB International, Wallingford, UK. p. 245260.Google Scholar
45 Niangado, O. 2001. The state of millet diversity and its use in West Africa. In Cooper, H.D., Spillane, C., and Hodgkin, T. (eds). Broadening the Genetic Base of Crop Production. CABI Publishing in co-operation with FAO and IPGRI, CAB International, Wallingford, UK. p. 147157.Google Scholar
46 Tsegaye, S. 1996. Estimation of outcrossing rate in landraces of tetraploid wheat (Triticum turgidum L.). Plant Breeding 115(3):195197.Google Scholar
47 Waines, J.G. and Hegde, S.G. 2003. Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Science 43:451463.Google Scholar
48 Abdel-Ghani, A.H., Parzies, H.K., Omary, A., and Geiger, H.H. 2004. Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theoretical and Applied Genetics 109(3):588595.Google Scholar
49 Jensen, N.F. 1952. Intra-varietal diversification in oat breeding. Agronomy Journal 44:3034.Google Scholar
50 De Vallavieille Pope, C. 2004. Management of disease resistance diversity of cultivars of a species in single fields: controlling epidemics. Comptes Rendus Biologies, 327:611620.Google Scholar
51 WASS. 2005. Washington Agricultural Statistics. USDA National Agricultural Statistics Service and Washington Agricultural Statistics Service, Olympia, USA.Google Scholar
52 Finckh, M.R., Gacek, E.S., Goyeau, H., Lannou, C., Merz, U., Mundt, C.C., Munk, L., Nadziak, J., Newton, A.C., de Vallavieille-Pope, C., and Wolfe, M.S. 2000. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 20:813837.Google Scholar
53 Meung, H., Zhu, Y.Y., Revilla-Molina, I., Fan, J.X., Chen, H.R., Pangga, I., Cruz, C.V., and Mew, T.W. 2003. Using genetic diversity to achieve sustainable rice disease management. Plant Disease 87:11561169.Google Scholar
54 Smithson, J.B. and Lenne, J.M. 1996. Varietal mixtures: a viable strategy for sustainable productivity in subsistence agriculture. Annuals of Applied Biology 128:127158.Google Scholar
55 Kiaer, L., Skovgaard, I., and Ostergard, H. 2009. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crops Research 114:361373.Google Scholar
56 Barrios-Masias, F.H., Cantwell, M.I., and Jackson, L.E. 2011. Cultivar mixtures of processing tomato in an organic agroecosystem. Organic Agriculture: Official Journal of the International Society of Organic Agriculture Research 1:1730.Google Scholar
57 Cowger, C. and Weisz, R. 2008. Winter wheat blends (mixtures) produce a yield advantage in North Carolina. Agronomy Journal 100:169177.Google Scholar
58 Phillips, S.L. and Wolfe, M.S. 2005. Evolutionary plant breeding for low input systems. Journal of Agricultural Science 143:245254.Google Scholar
59 Repo-Carrasco, R., Espinoza, C., and Jacobsen, S.E. 2003. Nutritional value and use of the Andean crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Reviews International 19(1,2):179189.Google Scholar
60 Bravo, R., Valdivia, R., Padulosi, S., and Jäger, M. (eds) 2010. Chapter XI. Aporte nutricional de granos de cañihua, quinua y kiwicha. In Granos Andinos - Avances, logros y experiencias. Bioversity International, Rome, Italy.Google Scholar
61 Kent, N. 1983. Technology of Cereals. 3rd ed. Pergamon Press, Oxford, New York.Google Scholar
62 Ley General de Semillas. Ley No. 27262 del Congreso de la República del Peru.Google Scholar
63 CONASE. 2001. Tasa de Uso de Semilla Certificada. Reporte Anual, Comisión Nacional de Semillas, Lima, Peru.Google Scholar
64 World Food Programme. Country Profile: Peru. United Nations World Food Programme, Rome, Italy. Available at Web site: http://www.wfp.org/countries/peru (verified 13 January 2013).Google Scholar
65 Kruijssen, F., Giuliani, A., and Sudha, M. 2009. Marketing underutilized crops to sustain agrobiodiversity and improve livelihoods. Acta Horticulturae 806(2):415422.Google Scholar
66 Hellin, J. and Higman, S. 2005. Crop diversity and livelihood security in the Andes. Development in Practice 15(2):165174.Google Scholar