Published online by Cambridge University Press: 05 March 2007
A pot experiment to determine the effects of summer cover crops and soil amendments on okra yields and population densities of various soil nematode taxa was conducted in two consecutive growing seasons in a subtropical region. Two cover crops, sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor×S. bicolor var. sudanense), were grown and returned to the soil with fallow as a control. As soon as these cover crops were harvested, they were soil-incorporated together with one of several organic amendments. These organic amendments were biosolids, N-Viro soil (a 1:1 mixture of coal ash and biosolids), coal ash, co-compost (a 3:7 mixture of biosolids and yard wastes), and yard waste compost compared with a control (no additional amendment). Other treatments were fumigation with MC-33 (a mixture of 33% of methyl bromide and 67% of chloropicrin) and cover crop removal (harvested and removed cover crops and their residues from the soil). A nematode-susceptible vegetable crop, okra (Abelmoschus esculentus L.), was grown under these treatments. Among organic amendments, the application of biosolids produced the highest okra yield and biomass, and greatly suppressed root-knot nematodes, Meloidogyne incognita, in the soil. Between these two cover crops, sunn hemp was superior to sorghum sudangrass in improving okra production and in suppressing root-knot nematodes. The result indicates that growing sunn hemp as a cover crop and applying certain organic amendments can improve okra production and suppress root-knot nematodes, which are very damaging to okra plants. Such combined practices show a significant potential for application in organic farming and sustainable agriculture systems in a tropical or subtropical region.