Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T07:02:31.910Z Has data issue: false hasContentIssue false

Efficiency of an agrosystem designed for family farming in the pre-Amazon region

Published online by Cambridge University Press:  10 September 2010

Alana das Chagas Ferreira Aguiar
Affiliation:
UFMA, Centro de Ciências Agrárias e Ambientais, BR 222, Km 04, 65500-000, Chapadinha, Maranhão, Brazil.
Idelfonso Colares de Freitas
Affiliation:
UEMA, Programa de Pós Graduação em Agroecologia, Caixa Postal 3004, 65054-970, São Luís, Maranhão, Brazil.
Cristina Silva Carvalho
Affiliation:
UEMA, Programa de Pós Graduação em Agroecologia, Caixa Postal 3004, 65054-970, São Luís, Maranhão, Brazil.
Paulo Henrique Marques Monroe
Affiliation:
UEMA, Programa de Pós Graduação em Agroecologia, Caixa Postal 3004, 65054-970, São Luís, Maranhão, Brazil.
Emanoel Gomes de Moura*
Affiliation:
UEMA, Programa de Pós Graduação em Agroecologia, Caixa Postal 3004, 65054-970, São Luís, Maranhão, Brazil.
*
*Corresponding author: [email protected]

Abstract

In the humid tropics, the continuous use of the same area reduces nutrient availability and increases the incidence of weeds. To circumvent these obstacles, farmers practice itinerant agriculture associated with slashing and burning with negative effects on the local and global environment. In search for a suitable system for humid tropical agriculture, the objective of this study was to investigate the performance of no-till alley cropping in conjunction with the use of annual legume crops grown during the off-season. The experiment was implemented in a one-hectare alley cropping system in which the leguminous tree clitoria (Clitoria fairchildiana R.A. Howard) was used. The experimental design consisted of randomized blocks with four replications of the following treatments: Stylosanthis (Stylosanthis capitata), showey rattlebox (Crotalaria spectabilis), sunn hemp (Crotalaria juncea), jack bean (Canavalia ensiformis) and a control with clitoria alone, without an annual legume. In January 2007 and 2008, maize was planted in each alley. One hundred and twenty days after annual legumes were sown, the total biomass was recorded. Weed incidence was assessed 35 days after maize planting. Analyses of the C, N, P, K, Ca and Mg contents of the legumes were carried out. To assess soil organic matter (SOM), composite soil samples from the surface 0–5 cm were collected from experimental plots. Two adjacent areas were also sampled for comparison: a 10-year-old secondary forest and an area of conventional tillage. The SOM was fractionated using a densitometric and a granulometric method. Conventional systems reduce the silt and free light organic matter fractions more than no till. The use of annual legumes changes the composition of the weed community, replacing the more aggressive types with those less competitive. The use of showy rattlebox (C. spectabilis) may be an effective strategy for reducing weed density in the long-season crop. Furthermore, relative to the use of leguminous trees alone, higher yields of maize can be obtained with the use of showy rattlebox (C. spectabilis) and sunn hemp (C. juncea) without the application of additional N.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Lal, R. 2009. Soils and food sufficiency. A review. Agronomy for Sustainable Development 29:113133.CrossRefGoogle Scholar
2Affholder, F., Scopel, F., Neto, J.M., and Capillon, A. 2003. Diagnosis of the productivity gap using a crop model. Methodology and case study of small-scale maize production in central Brazil. Agronomie 23:305325.CrossRefGoogle Scholar
3Araujo, J.C., Moura, E.G., Aguiar, A.C.F., and Mendonça, V. 2007. Supressão de plantas daninhas por leguminosas anuais em sistema agroecológico na Pré-Amazônia. Planta Daninha 25:267275.CrossRefGoogle Scholar
4Ferreira, L.V., Venticinque, E., and Almeida, S. 2005. O desmatamento na Amazônia e a importância das área protegidas. Estudos Avançados 19:157166.CrossRefGoogle Scholar
5Moura, E.G., Araújo, J.R.G., Monroe, P.H.M., Nascimento, I.O., and Aguiar, A.C.F. 2009. Patents on periphery of the Amazon rainforest. Recent Patents on Food, Nutrition and Agriculture 1:142148.CrossRefGoogle ScholarPubMed
6Fearnside, P. 2002. Fogo e emissão de gases de efeito estufa dos ecossistemas florestais da Amazônia brasileira. Estudos Avançados 16:99–123.CrossRefGoogle Scholar
7Hendrickson, J.R., Hanson, J.D., Tanaka, D.L., and Sassenrath, G. 2008. Principles of integrated agricultural systems: introduction to processes and definition. Renewable Agriculture and Food Systems 23(4):265271.CrossRefGoogle Scholar
8Ogunlana, E.A. 2004. The technology adoption behavior of women farmers: the case of alley farming in Nigeria. Renewable Agriculture and Food Systems 19(1):5765.CrossRefGoogle Scholar
9Leite, A.A.L., Ferraz Junior, A.S.L., Moura, E.G., and Aguiar, A.C.F. 2008. Comportamento de dois genótipos de milho cultivados em sistema de aléias preestabelecido com diferentes leguminosas arbóreas. Bragantia 67:875882.CrossRefGoogle Scholar
10Moura, E.G., Moura, N.G., Marques, E.S., Pinheiro, K.M., Costa Sobrinho, J.R.S., and Aguiar, A.C.F. 2009. Evaluating chemical and physical quality indicators for a structurally fragile tropical soil. Soil Use and Management 25:368375.CrossRefGoogle Scholar
11Aguiar, A.C.F., Amorim, A.P., Coelho, K.P., and Moura, E.G. 2009. Environment and agricultural benefits of a management system designed for sandy loam soils of the humid tropics. Revista Brasileira de Ciência do Solo 33:14731480.CrossRefGoogle Scholar
12Aguiar, A.C.F., Bicudo, S.J., Costa Sobrinho, J.R.S., Martins, A.L.S., Coelho, K.P., and Moura, E.G. 2009. Nutrient recycling and physical indicators of an alley cropping system in a sandy loam soil in the pre-Amazon region of Brazil. Nutrient Cycling in Agroecosystems 25:112.Google Scholar
13van Raij, B., Cantarela, H., Quaggio, J.A., and Furlani, A.M.C. 1997. Recomendações de adubação e calagem para o Estado de São Paulo. Boletim técnico, 100. Instituto Agronômico, Campinas.Google Scholar
14Tedesco, M.J., Gianello, C., Bissani, C.A., Bohnen, H., and Volkweiss, S.J. 1995. Análise de solos, plantas e outros materiais. UFRGS, Porto Alegre.Google Scholar
15Van Soest, P.J. 1967. Development of a comprehensive system of feed analysis and its application to forages. Journal of Animal Science 26:119128.CrossRefGoogle Scholar
16Tian, G., Brussaard, L., and Kang, B. 1995. An index for assessing the quality of plant residues and evaluating their effects on soil and crop in the (sub-) humid tropics. Applied Soil Ecology 2:2532.CrossRefGoogle Scholar
17IAC. 2001. Análise química para avaliação da fertilidade de solos tropicais. IAC, Campinas.Google Scholar
18Machado, P.L.O.A. 2002. Fracionamento físico do solo por densidade e granulometria para a quantificação de compartimentos da matéria orgânica do solo – um procedimento para a estimativa pormerizada do sequestro de carbono pelo solo. Embrapa, Rio de Janeiro.Google Scholar
19Embrapa. 1997. Manual de métodos de análise de solos. Centro Nacional de Pesquisas de Solos, Rio de Janeiro.Google Scholar
20Statsoft. 2007. Electronic Statistics Program. StatSoft, Tulsa, OK.Google Scholar
21Sawyer, J.E. and Mallarino, A.P. 2002. Corn leaf potassium deficiency symptoms. In The Integrated Crop Management Newsletter. IC-488 (15). Iowa State University Extension.Google Scholar
22Yang, X.E., Liu, J.X., Wang, W.M., Yez, Q., and Luo, A.C. 2004. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes. Journal of Plant Nutrition 27(5):837852.CrossRefGoogle Scholar
23Feller, C. and Beare, M.H. 1997. Physical control of soil organic matter dynamics in the tropics. Geoderma 79:69–116.CrossRefGoogle Scholar
24Tan, Z., Lal, R., Owens, L., and Izaurralde, R.C. 2007. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil and Tillage Research 92:5359.CrossRefGoogle Scholar
25Pinheiro, E.F.M., Pereira, M.G., Anjos, L.H.C., and Machado, P.L.O.A. 2004. Fracionamento densimétrico da matéria orgânica do solo sob diferentes sistemas de manejo e cobertura vegetal em Paty do Alferes (RJ). Revista Brasileira de Ciência do Solo 28:731737.CrossRefGoogle Scholar
26Souza, E.D., Carneiro, M.A.C., Paulino, H.B., Silva, C.A., and Buzetti, S. 2006. Alterações nas frações do carbono em um neossolo quartzarênico submetido a diferentes sistemas de uso do solo. Acta Scientiarum Agronomy 28:305311.Google Scholar
27Christensen, B.T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science 20:189.Google Scholar
28Shepherd, M.A., Harrison, R., and Webb, J. 2002. Managing soil organic matter – implications for soil structure on organic farms. Soil Use and Management 18:284292.CrossRefGoogle Scholar
29Moura, E.G., Albuquerque, J.M., and Aguiar, A.C.F. 2008. Growth and productivity of corn as affected by mulching and tillage in alley cropping systems. Scientia Agricola 65:204208.CrossRefGoogle Scholar
30Christensen, B.T. 2000. Organic Matter in Soil: Structure, Function and Turnover. Dias, Tjele.Google Scholar
31Kristiansen, P., Sindel, B.M., and Jessop, R.S. 2008. Weed management in organic Echinacea (Echinacea purpurea) and lettuce (Lactuca sativa) production. Renewable Agriculture and Food Systems 23(2):120135.CrossRefGoogle Scholar
32Maclean, R.H., Litsinger, J.A., Moody, K., Watson, A.K., and Libetario, E.M. 2003. Impact of Gliricidia spectabilis hedgerows on weeds and insect pests of upland rice. Agriculture, Ecosystems and Environment 94:275288.CrossRefGoogle Scholar
33Koocheki, A., Nassiri, M., Alimoradi, L., and Ghorbani, R. 2009. Effect of cropping systems and crop rotations on weeds. Agronomy for Sustainable Development 29:401408.CrossRefGoogle Scholar
34Inderjit, Weston, L.A., and Duke, S.O. 2005. Challenges, achievements and opportunities in allelopathy research. Journal of Plant Interactions 1:6981.CrossRefGoogle Scholar