Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-12T22:01:00.080Z Has data issue: false hasContentIssue false

Seeking Ambiguity: a Review on Neuroimaing Studies on Decision Making under Ambiguity

Published online by Cambridge University Press:  09 January 2015

Fumihiko Taya*
Affiliation:
Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore
Get access

Summary

Recent developments of neuroimaging technology enable us to investigate the brain network implicated in economical decision making (Glimcher et al. 2004; Camerer 2008). One of the fascinating topic is “ambiguity aversion” where people tend to avoid unknown options as demonstrated by Ellsberg paradox. Although “ambiguity aversion” has been consistently observed in a variety of situations, uncertainty due to incomplete knowledge can be resolved by obtaining missing information, and people explore the ambiguous options as well.

Here, we review a number of neuroimaging studies on “ambiguity aversion” and associated works. It has been shown that the affective OFC and the cognitive prefrontal cortex play a crucial role in decision making under uncertainty. We discuss what kinds of cognitive function are involved in the decision making process by overviewing neuroimaing studies on higher cognitive processes in general including exploratory behavior.

Les développements récents de l'imagerie cérébrale permettent d'envisager le réseau spécifique du cerveau qui est impliqué dans la prise de décision (Glimcher et al. 2004; Camerer 2008). L'un des domaines les plus intéres¬sants est celui de « l'aversion à l'ambiguïté », situation dans laquelle les agents essaient d'éviter les configurations inconnues comme cela apparaît clairement dans le paradoxe d'Ellsberg. Même si l'aversion à l'ambiguïté est un phénomène qui a été abondamment observé, on sait que l'incertitude procédant plutôt d'une incomplétude de l'information se résout après obtention de l'information manquante, et les agents peuvent alors considé¬rer les configurations ambiguës. Ici, nous nous proposons de recenser un grand nombre des études d'imagerie cérébrale consacrées à l'aversion à l'ambiguïté. Il a été démontré que la fonction affective du COF ainsi que la fonction cognitive du cortex préfrontal jouent un rôle déterminant dans la prise de décision sous incertitude. Nous commentons la mise en évidence des fonctions cognitives qui sont impliquées dans la prise de décision en présentant les contributions en imagerie cérébrale consacrées aux processus cognitifs de haut niveau.

Type
II) Behaviorial Economics under the Scanner
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechara, A., Damasio, H., Tranel, D. and Anderson, S.W. (1998). “Dissociation of working memory from decision making within the human prefrontal cortex.”, Journal of Neuroscience, vol.18, pp. 428437.Google Scholar
Bechara, A., Tranel, D., Damasio, H. and Damasio, A.R. (1996). “Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex.”, Cerebral Cortex, vol.6, pp. 215225.Google Scholar
Bechara, a., Damasio, a.R., Damasio, H. and Anderson, S.W. (1994). “Insensitivity to future consequences following damage to human prefrontal cortex.”, Cognition, vol.50, pp. 715.Google Scholar
Behrmann, M., Geng, J.J. and Shomstein, S. (2004). “Parietal cortex and attention.”, Current Opinion in Neurobiology, vol.14, pp. 212217.Google Scholar
Botvinick, M.M., Cohen, J.D. and Carter, C.S. (2004). “Conflict monitoring and anterior cingulate cortex: an update”, Trends in Cognitive Sciences, vol.8, No. 12, pp. 539546.Google Scholar
Bunge, S.A., Wendelken, C., Badre, D. and Wagner, A.D. (2005). “Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms.”, Cerebral Cortex, vol.15, pp. 239249.Google Scholar
Camerer, C. and Weber, M. (1992). “Recent developments in modeling preferences: Uncertainty and ambiguity”, Journal of Risk and Uncertainty, vol.5, No. 4, pp. 325370.Google Scholar
Camerer, C.F. (2008). “Neuroeconomics: opening the gray box”, Neuron, vol.60, No. 3, pp. 416419.Google Scholar
Christoff, K., Ream, J.M., Geddes, L.P.T. and Gabrieli, J.D.E. (2003). “Evaluating self-generated information: anterior prefrontal contributions to human cognition.”, Behavioral neuroscience, vol.117, pp. 11611168.Google Scholar
Critchley, H.D., Mathias, C.J. and Dolan, R.J. (2001). “Neural activity in the human brain relating to uncertainty and arousal during anticipation.”, Neuron, vol.29, pp. 537545.Google Scholar
Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B. and Dolan, R.J. (2006). “Cortical substrates for exploratory decisions in humans”, Nature, vol.441, No. 7095, pp. 876879.Google Scholar
Elliott, R., Rees, G. and Dolan, R.J. (1999). “Ventromedial prefrontal cortex mediates guessing.”, Neuropsychologia, vol.37, pp. 403411.Google Scholar
Fukui, H., Murai, T., Fukuyama, H., Hayashi, T. and Hanakawa, T. (2005). “Functional activity related to risk anticipation during performance of the Iowa Gambling Task.”, Neuroimage, vol.24, pp. 253259.Google Scholar
Ghirardato, P. (2004). “Differentiating ambiguity and ambiguity attitude”, Journal of Economic Theory, vol.118, pp. 133173.Google Scholar
Gilbert, S.J., Spengler, S., Simons, J.S., Steele, J.D., Lawrie, S.M., Frith, C.D. and Burgess, P.W. (2006). “Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis.”, Journal of cognitive neuroscience, vol.18, pp. 932948.Google Scholar
Gilboa, I. and Schmeidler, D. (1989). “Maxmin expected utility with non-unique prior”, Journal of Mathematical Economics, vol.18, No. 2, pp. 141153.Google Scholar
Glimcher, P.W. and Rustichini, A. (2004). “Neuroeconomics: the consilience of brain and decision”, Science, vol.306, No. 5695, pp. 447452.Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. and Camerer, C.F. (2005). “Neural systems responding to degrees of uncertainty in human decision-making”, Science, vol.310, No. 5754, pp. 16801683.Google Scholar
Huettel, S.A., Stowe, C.J., Gordon, E.M., Warner, B.T. and Platt, M.L. (2006). “Neural signatures of economic preferences for risk and ambiguity”, Neuron, vol.49, No. 5, pp. 765775.Google Scholar
Kahneman, D. and Tversky, A. (1982). “Variants of uncertainty”, Cognition, vol.11, No. 2, pp. 143157.Google Scholar
Kerns, J.G., Cohen, J.D., MacDonald, A.W., 3rd, Cho, R.Y., Stenger, V.A. and Carter, C.S. (2004). “Anterior cingulate conflict monitoring and adjustments in control”, Science, vol.303, No. 5660, pp. 10231026.Google Scholar
Knutson, B. and Peterson, R. (2005). “Neurally reconstructing expected utility”, Games and Economic Behavior, vol.52, No. 2, pp. 305315.Google Scholar
Koechlin, E. and Hyafil, A. (2007). “Anterior prefrontal function and the limits of human decision-making.”, Science, vol.318, pp. 594598.Google Scholar
Koechlin, E. (2011). “Frontal pole function: what is specifically human?”, Trends in Cognitive Sciences, vol.15, pp. 241.Google Scholar
Koechlin, E., Danek, A., Bumod, Y. and Grafman, J. (2002). “Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences in humans.”, Neuron, vol.35, pp. 371381.Google Scholar
Koechlin, E., Basso, G., Pietrini, P., Panzer, S. and Grafman, J. (1999). “The role of the anterior prefrontal cortex in human cognition.”, Nature, vol.399, pp. 148151.Google Scholar
Krain, A.L., Wilson, A.M., Arbuckle, R., Castellanos, F.X. and Milham, M.P. (2006). “Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making.”, Neuroimage, vol.32, pp. 477484.Google Scholar
Kroger, J.K., Sabb, F.W., Fales, C.L., Bookheimer, S.Y., Cohen, M.S. and Holyoak, K.J. (2002). “Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: a parametric study of relational complexity.”, Cerebral Cortex, vol.12, pp. 477485.Google Scholar
Levy, I., Snell, J., Nelson, A.J., Rustichini, A. and Glimcher, P.W. (2010). “Neural representation of subjective value under risk and ambiguity.”, Journal of neurophysiology, vol.103, pp. 10361047.Google Scholar
O'Doherty, J., Critchley, H., Deichmann, R. and Dolan, R.J. (2003). “Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices”, J Neurosci, vol.23, No. 21, pp. 79317939.Google Scholar
O'Doherty, J.P., Hampton, A. and Kim, H. (2007). “Model-based fMRI and its application to reward learning and decision making.”, Annals of the New York Academy of Sciences, vol.1104, pp. 3553.Google Scholar
O'Doherty, J.P. (2004). “Reward representations and reward-related learning in the human brain: insights from neuroimaging”, Curr Opin Neurobiol, vol.14, No. 6, pp. 769776.Google Scholar
Paulus, M.P., Hozack, N., Zauscher, B., McDowell, J.E., Frank, L., Brown, G.G. and Braff, D.L. (2001). “Prefrontal, parietal, and temporal cortex networks underlie decision-making in the presence of uncertainty.”, Neuroimage, vol.13, pp. 91100.Google Scholar
Ramnani, N. and Owen, A.M. (2004). “Anterior prefrontal cortex: insights into function from anatomy and neuroimaging.”, Nature reviews. Neuroscience, vol.5, pp. 184194.Google Scholar
Rogers, R.D., Owen, A.M., Middleton, H.C., Williams, E.J., Pickard, J.D., Sahakian, B.J. and Robbins, T.W. (1999). “Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex”, J Neurosci, vol.19, No. 20, pp. 90299038.Google Scholar
Rubinsztein, J.S., Fletcher, P.C., Rogers, R.D., Ho, L.W., Aigbirhio, F.I., Paykel, E.S., Robbins, T.W. and Sahakian, B.J. (2001). “Decision-making in mania: a PET study.”, Brain: a journal of neurology, vol.124, pp. 25502563.Google Scholar
Strange, B.A., Henson, R.N., Friston, K.J. and Dolan, R.J. (2001). “Anterior prefrontal cortex mediates rule learning in humans.”, Cerebral Cortex, vol.11, pp. 10401046.Google Scholar