In this paper, we study two kinds of combinatorial
objects, generalized integer partitions and tilings of 2D-gons
(hexagons, octagons, decagons, etc.).
We show that the sets of partitions,
ordered with a simple dynamics, have the distributive lattice structure.
Likewise, we show that the set of tilings of a 2D-gon
is the disjoint union of distributive
lattices which we describe.
We also discuss the special case of linear integer
partitions, for which other dynamical models exist.