No CrossRef data available.
Article contents
Transcendence of numbers with an expansion in a subclass of complexity2n + 1
Published online by Cambridge University Press: 18 October 2006
Abstract
We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let k ≥ 2 be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.
- Type
- Research Article
- Information
- RAIRO - Theoretical Informatics and Applications , Volume 40 , Issue 3: Word Avoidability Complexity And Morphisms (WACAM) , July 2006 , pp. 459 - 471
- Copyright
- © EDP Sciences, 2006
References
B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I
339 (2004) 11–14.
Adamczewski, B. and Cassaigne, J., On the transcendence of real numbers with a regular expansion.
J. Number Theory
103 (2003) 27–37.
CrossRef
Allouche, J.-P., Nouveaux résultats de transcendence de réels à développements non aléatoire.
Gazette des Mathématiciens
84 (2000) 19–34.
Allouche, J.-P. and Zamboni, L.Q., Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms.
J. Number Theory
69 (1998) 119–124.
CrossRef
Arnoux, P. and Rauzy, G., Représentation géométrique de suites de complexité 2n + 1.
Bull. Soc. Math. France
119 (1991) 199–215.
CrossRef
Ferenczi, S. and Mauduit, C., Transcendence of numbers with a low complexity expansion.
J. Number Theory
67 (1997) 146–161.
CrossRef
Hedlund, G.A. and Morse, M., Symbolic dynamics II: Sturmian trajectories.
Amer. J. Math.
62 (1940) 1–42.
CrossRef
R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith.
95 (2000), 167–184.