Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T19:55:54.828Z Has data issue: false hasContentIssue false

Transcendence of numbers with an expansion in a subclass of complexity2n + 1

Published online by Cambridge University Press:  18 October 2006

Tomi Kärki*
Affiliation:
Department of Mathematics and Turku Centre for Computer Science, University of Turku, 20014 Turku, Finland; [email protected]
Get access

Abstract

We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let k ≥ 2 be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 11–14.
Adamczewski, B. and Cassaigne, J., On the transcendence of real numbers with a regular expansion. J. Number Theory 103 (2003) 2737. CrossRef
Allouche, J.-P., Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens 84 (2000) 1934.
Allouche, J.-P. and Zamboni, L.Q., Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69 (1998) 119124. CrossRef
Arnoux, P. and Rauzy, G., Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. France 119 (1991) 199215. CrossRef
Ferenczi, S. and Mauduit, C., Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997) 146161. CrossRef
Hedlund, G.A. and Morse, M., Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 142. CrossRef
Ridout, D., Rational approximations to algebraic numbers. Mathematika 4 (1957) 125131. CrossRef
R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000), 167–184.