Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:51:45.055Z Has data issue: false hasContentIssue false

Relating Automata-theoretic Hierarchiesto Complexity-theoreticHierarchies

Published online by Cambridge University Press:  15 December 2002

Victor L. Selivanov*
Affiliation:
Novosibirsk Pedagogical University, 28 Vilyniskaya Str., Novosibirsk 630126, Russia; [email protected].
Get access

Abstract

We show that some natural refinements of the Straubing and Brzozowskihierarchies correspond (via the so called leaf-languages) step by step tosimilar refinements of the polynomial-time hierarchy. This extends a result of Burtschik and Vollmer on relationship between the Straubing and thepolynomial hierarchies. In particular, this applies to the Boolean hierarchyand the plus-hierarchy.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1988).
J.L. Balcázar, J. Díaz and J. Gabarró, Structural Complexity II, Vol. 11 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1990).
Borchert, B., On the acceptance power of regular languages. Theoret. Comput. Sci. 148 (1995) 207-225. CrossRef
Borchert, B., Kuske, D. and Stephan, F., On existentially first-order definable languages and their relation to NP. RAIRO: Theoret. Informatics Appl. 33 (1999) 259-269.
Bovet, D.P., Crescenzi, P. and Silvestri, R., A uniform approach to define complexity classes. Theoret. Comput. Sci. 104 (1992) 263-283. CrossRef
Brzozowski, J.A. and Knast, R, The dot-depth hierarchy of star-free languages is infinite. J. Comput. Systems Sci. 16 (1978) 37-55. CrossRef
Burtschick, H.-J. and Vollmer, H., Lindström Quatifiers and Leaf Language Definability. Int. J. Found. Comput. Sci. 9 (1998) 277-294. CrossRef
Hemaspaandra, E., Hemaspaandra, L. and Hempel, H., What's up with downward collapse: Using the easy-hard technique to link Boolean and polynomial hierarchy collapses. Compl. Theory Column 21, ACM-SIGACT Newslett. 29 (1998) 10-22. CrossRef
U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K.W. Wagner, On the power of polynomial time bit-reductions, in Proc. 8th Structure in Complexity Theory (1993) 200-207.
U. Hertrampf, H. Vollmer and K.W. Wagner, On the power of number-theoretic operations with respect to counting, in Proc. 10th Structure in Complexity Theory (1995) 299-314.
Hertrampf, U., Vollmer, H. and Wagner, K.W., On balanced vs. unbalanced computation trees. Math. Systems Theory 29 (1996) 411-421. CrossRef
Jenner, B., McKenzie, P. and Therien, D., Logspace and logtime leaf languages. Inform. and Comput. 129 (1996) 21-33. CrossRef
K. Kuratowski and A. Mostowski, Set Theory. North Holland (1967).
J. Köbler, U. Shöning and K.W. Wagner, The difference and truth-table hierarchies for NP. Dep. of Informatics, Koblenz, Preprint 7 (1986).
R. McNaughton and S. Papert, Counter-free automata. MIT Press, Cambridge,Massachusets (1971).
Perrin, D. and Pin, J.-E., First order logic and star-free sets. J. Comput. Systems Sci. 32 (1986) 393-406. CrossRef
Pin, J.-E. and Weil, P., Polynomial closure and unambiguous product. Theory Computing Systems 30 (1997) 383-422. CrossRef
Reith, S. and Wagner, K.W., Boolean, On lowness and Boolean highness, in Proc. 4-th Ann. Int. Computing and Combinatorics Conf. Springer, Berlin, Lecture Notes in Comput. Sci. 1449 (1998) 147-156. CrossRef
Selivanov, V.L., Two refinements of the polynomial hierarchy, in Proc. of Symposium on Theor. Aspects of Computer Science STACS-94. Springer, Berlin, Lecture Notes in Comput. Sci. 775 (1994) 439-448. CrossRef
V.L. Selivanov, Refining the polynomial hierarchy, Preprint No. 9. The University of Heidelberg, Chair of Mathematical Logic (1994) 20 p.
Selivanov, V.L., Fine hierarchies and Boolean terms. J. Symb. Logic 60 (1995) 289-317. CrossRef
Selivanov, V.L., Refining the polynomial hierarchy. Algebra and Logic 38 (1999) 456-475 (Russian, there is an English translation). CrossRef
V.L. Selivanov, A logical approach to decidability of hierarchies of regular star-free languages, in Proc. of 18-th Int. Symposium on Theor. Aspects of Computer Science STACS-2001 in Dresden, Germany. Springer, Berlin, Lecture Notes in Comput. Sci. 2010 (2001) 539-550 CrossRef
V.L. Selivanov and A.G. Shukin, On hierarchies of regular star-free languages (in Russian). Preprint 69 of A.P. Ershov Institute of Informatics Systems (2000) 28 p.
Shukin, A.G., Difference hierarchies of regular languages. Comput. Systems 161 (1998) 141-155 (in Russian).
H. Schmitz and K.W. Wagner, The Boolean hierarchy over level 1/2 of the Straubing-Therien hierarchy, Technical Report 201. Inst. für Informatik, Univ. Würzburg available at http://www.informatik.uni-wuerzburg.de.
Thomas, W., Classifying regular events in symbolic logic. J. Comput. Systems Sci. 25 (1982) 360-376. CrossRef
Vereshchagin, N.K., Relativizable and non-relativizable theorems in the polynomial theory of algorithms. Izvestiya Rossiiskoi Akademii Nauk 57 (1993) 51-90 (in Russian).
Wechsung, G. and Wagner, K., On the Boolean closure of NP, in Proc. of the 1985 Int. Conf. on Fundamentals of Computation theory. Springer-Verlag, Lecture Notes in Comput. Sci. 199 (1985) 485-493. CrossRef