Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T08:30:42.413Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  18 January 2008

Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Introduction
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Random reals “à la Chaitin” with no prefix-freeness (with V. Becher), submitted.
From index sets to randomness in ∅n (Random reals and possibly infinite computations – Part II) (with V. Becher), submitted.
Random reals and halting probabilities (with V. Becher, S. Figueira and J.S. Miller).
Random reals and possibly infinite computations – Part I: randomness in ∅ (with V. Becher). J. Symbolic Logic 70 (2005) 891–913.
Is randomness native to computer science? (with M. Ferbus), Curr. Trends Theor. Comput. Sci. 2 (2004) 141–179. Preliminary version in Bull. EATCS 74 (2001) 78–118.
Kolmogorov, complexities Kmin, Kmax on computable partially ordered sets (with M. Ferbus). Theor. Comput. Sci. 352 (2006) 159180.
Kolmogorov complexity and set theoretical representations of integers (with M. Ferbus). Math. Logic Quart. 52 (2006) 381–409.
Kolmogorov complexity and non determinism (with J.-Y. Marion). Theor. Comput. Sci. 271 (2002) 151–180.
Logics for finite words on infinite alphabets (with C. Choffrut), submitted.
Decision problems among the main subfamilies of rational relations (with C. Choffrut and O. Carton). RAIRO-Theor. Inf. Appl. 40 (2006) 255–275.
Separability of rational relations in A* x Nm by recognizable relations is decidable (with C. Choffrut). Inform. Process. Lett. 99 (2006) 27–32.
Modelization of deterministic rational relations. Theor. Comput. Sci. 281 (2002) 423–453.
The theory of rational relations on transfinite strings (with C. Choffrut), in Words, Languages and Combinatorics III (Kyoto, March 2000), World Scientific (2004) 103–151.
Uniformization of rational relations (with C. Choffrut), in Jewels are forever, book in honor of Arto Salomaa, Springer (1999) 59–71.
Every, recursive linear ordering has an isomorphic copy in DTIME-SPACE (n, log(n)). J. Symbolic Logic 55 (1990) 260276.
Synchronization of a bounded degree graph of cellular automata with non uniform delays in time Dlog mD. Theor. Comput. Sci. 356 (2006) 170–185.
Register cellular automata in the hyperbolic plane (with M. Margenstern). Fund. Inform. 61 (2004) 19–27.
Syntactical truth predicates for second order arithmetic (with L. Colson). J. Symbolic Logic 66 (2001) 225–256.
La théorie élémentaire de la fonction de couplage de Cantor des entiers naturels est décidable (with P. Cégielski and D. Richard). C. R. Acad. Sci. Sér. 1 331 (2000) 107–110.
Décidabilité et complexité des théories logiques. Collection Didactique INRIA 8 (1991) 7–97.
Contribution à l'étude d'une conjecture de théorie des nombres par le codage ZBV (with Denis Richard). Enseign. Math. 35 (1989) 125–189.
Recursion and topology on 2ω for possibly infinite computations (with V. Becher). Theor. Comput. Sci. 322 (2004) 85–136.
Intermediate submodels and generic extensions in set theory. Ann. Math. 101 (1975) 447–490.
Modéles intermédiaires et extensions génériques. C. R. Acad. Sci. 276 (1973) 1635–1638.
Minimalité des réels définis par forcing sur des familles d'arbres de suites finies d'entiers. C. R. Acad. Sci. 281 (1975) 301–304.
Combinatorics on ideals and forcing. Ann Math. Logic 3 (1971) 363–394.
Problème de la minimalité des réels définis par forcing à partir d'un ultrafiltre. C. R. Acad. Sci. 270 (1970) 169–172.
Détermination des jeux boréliens et problèmes logiques associés. Sém. Bourbaki 478 (1976) 1–14.
La non-contradiction relative de l'axiome de Martin. Publ. Math. Univ. Paris VII 5 (1979) 61–74. Séminaire GMS (Grigorieff, McAloon, Stern).
Le réel 0#>. Publ. Math. Univ. Paris VII 5 (1979) 149–162. Séminaire GMS (Grigorieff, McAloon, Stern).
0# et les injections élémentaires de L dans L. Publ. Math. Univ. Paris VII 5 (1979) 163–202. Séminaire GMS (Grigorieff, McAloon, Stern).