We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Random reals “à la Chaitin” with no prefix-freeness (with V. Becher), submitted.
[2]
From index sets to randomness in ∅n (Random reals and possibly infinite computations – Part II) (with V. Becher), submitted.
[3]
Random reals and halting probabilities (with V. Becher, S. Figueira and J.S. Miller).
[4]
Random reals and possibly infinite computations – Part I: randomness in ∅ (with V. Becher). J. Symbolic Logic70 (2005) 891–913.
[5]
Is randomness native to computer science? (with M. Ferbus), Curr. Trends Theor. Comput. Sci.2 (2004) 141–179. Preliminary version in Bull. EATCS74 (2001) 78–118.
[6]
Kolmogorov, complexities Kmin, Kmax on computable partially ordered sets (with M. Ferbus). Theor. Comput. Sci.352 (2006) 159–180.
[7]
Kolmogorov complexity and set theoretical representations of integers (with M. Ferbus). Math. Logic Quart.52 (2006) 381–409.
[8]
Kolmogorov complexity and non determinism (with J.-Y. Marion). Theor. Comput. Sci.271 (2002) 151–180.
[9]
Logics for finite words on infinite alphabets (with C. Choffrut), submitted.
[10]
Decision problems among the main subfamilies of rational relations (with C. Choffrut and O. Carton). RAIRO-Theor. Inf. Appl.40 (2006) 255–275.
[11]
Separability of rational relations in A* x Nm by recognizable relations is decidable (with C. Choffrut). Inform. Process. Lett.99 (2006) 27–32.
[12]
Modelization of deterministic rational relations. Theor. Comput. Sci.281 (2002) 423–453.
[13]
The theory of rational relations on transfinite strings (with C. Choffrut), in Words, Languages and Combinatorics III (Kyoto, March 2000), World Scientific (2004) 103–151.
[14]
Uniformization of rational relations (with C. Choffrut), in Jewels are forever, book in honor of Arto Salomaa, Springer (1999) 59–71.
[15]
Every, recursive linear ordering has an isomorphic copy in DTIME-SPACE (n, log(n)). J. Symbolic Logic55 (1990) 260–276.
[16]
Synchronization of a bounded degree graph of cellular automata with non uniform delays in time DlogmD. Theor. Comput. Sci.356 (2006) 170–185.
[17]
Register cellular automata in the hyperbolic plane (with M. Margenstern). Fund. Inform.61 (2004) 19–27.
[18]
Syntactical truth predicates for second order arithmetic (with L. Colson). J. Symbolic Logic66 (2001) 225–256.
[19]
La théorie élémentaire de la fonction de couplage de Cantor des entiers naturels est décidable (with P. Cégielski and D. Richard). C. R. Acad. Sci. Sér. 1 331 (2000) 107–110.
[20]
Décidabilité et complexité des théories logiques. Collection Didactique INRIA8 (1991) 7–97.
[21]
Contribution à l'étude d'une conjecture de théorie des nombres par le codage ZBV (with Denis Richard). Enseign. Math.35 (1989) 125–189.
[22]
Recursion and topology on 2≤ω for possibly infinite computations (with V. Becher). Theor. Comput. Sci.322 (2004) 85–136.
[23]
Intermediate submodels and generic extensions in set theory. Ann. Math.101 (1975) 447–490.
[24]
Modéles intermédiaires et extensions génériques. C. R. Acad. Sci.276 (1973) 1635–1638.
[25]
Minimalité des réels définis par forcing sur des familles d'arbres de suites finies d'entiers. C. R. Acad. Sci.281 (1975) 301–304.
[26]
Combinatorics on ideals and forcing. Ann Math. Logic3 (1971) 363–394.
[27]
Problème de la minimalité des réels définis par forcing à partir d'un ultrafiltre. C. R. Acad. Sci.270 (1970) 169–172.
[28]
Détermination des jeux boréliens et problèmes logiques associés. Sém. Bourbaki478 (1976) 1–14.
[29]
La non-contradiction relative de l'axiome de Martin. Publ. Math. Univ. Paris VII5 (1979) 61–74. Séminaire GMS (Grigorieff, McAloon, Stern).
[30]
Le réel 0#>. Publ. Math. Univ. Paris VII5 (1979) 149–162. Séminaire GMS (Grigorieff, McAloon, Stern).
[31]
0# et les injections élémentaires de L dans L. Publ. Math. Univ. Paris VII5 (1979) 163–202. Séminaire GMS (Grigorieff, McAloon, Stern).