Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T08:23:15.599Z Has data issue: false hasContentIssue false

Periodicity and roots of transfinite strings

Published online by Cambridge University Press:  15 July 2002

Olivier Carton
Affiliation:
Institut Gaspard Monge, CNRS, Université de Marne-la-Vallée 5, boulevard Descartes, 77454 Marne-la-Vallée Cedex 2, France; ([email protected])
Christian Choffrut
Affiliation:
LIAFA, Université Paris 7, étage, bureau 6A7, 175 rue du Chevaleret, 75013 Paris, France; ([email protected])
Get access

Abstract

This contribution extends the notions of roots and periodicity to strings of transfinite lengths. It shows that given a transfinite string, either it possesses a unique root or the set of its roots are equivalent in a strong way.

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carpi, A. and de Luca, A., Periodic-like words, periodicity and boxes. Acta Informatica 37 (2001) 597-618. CrossRef
Y. Césari and M. Vincent, Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris A (1978) 1175-1177.
C. Choffrut and S. Horváth, Transfinite equations in transfinite strings, 625-649.
Duval, J.P., Périodes et répétitions des mots du monoïde libre. Theoret. Comput. Sci. 9 (1979) 17-26. CrossRef
Duval, J.P., Mots de Lyndon et périodicité. RAIRO: Theoret. Informatics Appl. 14 (1980) 181-191.
Fine, N.J. and Wilf, H.S., Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 3 (1965) 109-114. CrossRef
Giammarresi, D., Mantaci, S., Mignosi, F. and Restivo, A., A periodicity theorem fro trees. Theoret. Comput. Sci. 1-2 (1998) 145-181. CrossRef
D. Klaua, Allgemeine Mengenlehre. Akademie Verlag (1969).
J.G. Rosenstein, Linear ordering. Academic Press, New York (1982).
W. Sierpinski, Cardinal and Ordinal Numbers. Warsaw: PWN (1958).