Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T08:15:47.006Z Has data issue: false hasContentIssue false

On multiplicatively dependent linear numeration systems, and periodic points

Published online by Cambridge University Press:  15 December 2002

Christiane Frougny*
Affiliation:
LIAFA, UMR 7089 du CNRS, 2 place Jussieu, 75251 Paris Cedex 05, France; [email protected]. Université Paris 8, France
Get access

Abstract

Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse and J.-P. Schreiber, Pisot and Salem numbers. Birkhäuser (1992).
Bertrand, A., Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285 (1977) 419-421.
Bertrand-Mathis, A., Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. CrossRef
Bès, A., An extension of the Cobham-Semënov Theorem. J. Symb. Logic 65 (2000) 201-211. CrossRef
Büchi, J.R., Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66-92. CrossRef
Bruyère, V. and Hansel, G., Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17-43. CrossRef
Cobham, A., On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969) 186-192. CrossRef
Durand, F., A generalization of Cobham's Theorem. Theory Comput. Systems 31 (1998) 169-185. CrossRef
S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press (1974).
Fabre, S., Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994) 197-208.
Fraenkel, A.S., Systems of numeration. Amer. Math. Monthly 92 (1985) 105-114. CrossRef
Frougny, Ch., Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60. CrossRef
Frougny, Ch., Conversion between two multiplicatively dependent linear numeration systems, in Proc. of LATIN 02. Springer-Verlag, Lectures Notes in Comput. Sci. 2286 (2002) 64-75. CrossRef
Ch. Frougny, J. Sakarovitch, Automatic conversion from Fibonacci representation to representation in base φ, and a generalization. Internat. J. Algebra Comput. 9 (1999) 351-384. CrossRef
Ch. Frougny, B. Solomyak, On Representation of Integers in Linear Numeration Systems, in Ergodic theory of Z d -Actions, edited by M. Pollicott and K. Schmidt. Cambridge University Press, London Math. Soc. Lecture Note Ser. 228 (1996) 345-368.
Ch. Frougny, B. Solomyak, On the context-freeness of the θ-expansions of the integers. Internat. J. Algebra Comput. 9 (1999) 347-350. CrossRef
Hansel, G., Systèmes de numération indépendants et syndéticité. Theoret. Comput. Sci. 204 (1998) 119-130. CrossRef
Hollander, M., Greedy numeration systems and regularity. Theory Comput. Systems 31 (1998) 111-133. CrossRef
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics. Cambridge University Press (1995).
M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).
Parry, W., On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. CrossRef
Puri, Y. and Ward, T., A dynamical property unique to the Lucas sequence. Fibonacci Quartely 39 (2001) 398-402.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits. J. Integer Sequences 4 (2001), Article 01.2.1.
Rényi, A., Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. CrossRef
Semënov, A.L., The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977) 289-299. CrossRef
Shallit, J., Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. CrossRef