Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:20:10.387Z Has data issue: false hasContentIssue false

Learning discrete categorial grammars from structures

Published online by Cambridge University Press:  18 January 2008

Jérôme Besombes
Affiliation:
ONERA/DTIM (Traitement de l'Information et Modélisation); [email protected]
Jean-Yves Marion
Affiliation:
Nancy-Université, Loria-INPL-ENSMN; [email protected]
Get access

Abstract

We define the class of discrete classical categorial grammars, similar in the spirit to the notion of reversible class of languages introduced by Angluin and Sakakibara. We show that the class of discrete classical categorial grammars is identifiable from positive structured examples. For this, we provide an original algorithm, which runs in quadratic time in the size of the examples. This work extends the previous results of Kanazawa. Indeed, in our work, several types can be associated to a word and the class is still identifiable in polynomial time. We illustrate the relevance of the class of discrete classical categorial grammars with linguistic examples.

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angluin, D., Inference of reversible languages. J. ACM 29 (1982) 741765. CrossRef
Y. Bar-Hillel, C. Gaifman, and E. Shamir, On categorial and phrase structure grammars. Bulletin of Research Council of Israel F(9) (1960) 1–16.
R. Bonato and C. Retoré, Learning rigid lambek grammars and minimalist grammars from structured sentences, in Third Learning Language in Logic Workshop (LLL2001) (2001).
Buszkowski, W. and Penn, G., Categorial grammars determined from linguistic data by unification. Studia Logica 49 (1990) 431454. CrossRef
C. Costa Florêncio, Consistent identification in the limit of any of the classes -valued is np-hard, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. (2001) 125–138.
D. Dudau-Sofronie, Apprentissage de Grammaires Catégorielles pour simuler l'acquisition du Langage Naturel à l'aide d'informations sémantiques. Ph.D. thesis, Lille I University (2004).
Gold, M.E., Language identification in the limit. Inform. Control 10 (1967) 447474. CrossRef
M. Kanazawa, Learnable classes of Categorial Grammars. CSLI (1998).
Yannick Le Nir, Structures des analyses syntaxiques catégorielles. Application à l'inférence grammaticale. Ph.D. thesis, Rennes 1 University (2003).
M. Moortgat, Categorial type logics, in Handbook of Logic and Language. North-Holland, J. van Benthem and A. ter Meulen edition (1996).
Moortgat, M., Structural equations in language learning, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. 2099 (2001) 116. CrossRef
G.V. Morril, Type Logical Grammar: categorial logic of signs. Kluwer (1994).
C. Rétoré, The logic of categorial grammars. Technical Report 5703, INRIA (2005). http://www.inria.fr/rrrt/rr-5703.html
Sakakibara, Y., Efficient learning of context free grammars from positive structural examples. Inform. Comput. 97 (1992) 2360. CrossRef
I. Tellier, Modéliser l'acquisition de la syntaxe du langage naturel via l'hypothése de la primauté du sens. Ph.D. thesis, Lille I University (2005).
Tiede, H.J., Lambek calculus proofs and tree automata. Lect. Notes Comput. Sci. 2014 (2001) 251265. CrossRef