No CrossRef data available.
Article contents
Deciding whether a relation defined inPresburger logic can be defined in weaker logics
Published online by Cambridge University Press: 18 January 2008
Abstract
We consider logics on
$\mathbb{Z}$ and $\mathbb{N}$
which are weaker than
Presburger arithmetic and
we settle the following decision
problem: given a k-ary
relation on $\mathbb{Z}$
and $\mathbb{N}$
which are first order definable in
Presburger arithmetic, are they definable in these
weaker logics? These logics, intuitively,
are obtained by considering modulo and threshold counting predicates for differences of two variables.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2007
References
Carton, O., Choffrut, C. and Grigorieff, S.. Decision problems for rational relations.
RAIRO-Theor. Inf. Appl.
40 (2006) 255–275.
CrossRef
C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints. J. Algebra Lang. Comput.
5 (2000) 371–404.
S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press (1974).
S. Eilenberg and M.-P. Schützenbeger. Rational sets in commutative monoids. J. Algebra
13 (1969) 173–191.
S. Ginsburg and E.H. Spanier. Bounded regular sets. Proc. Amer. Math. Soc. 17
(1966) 1043–1049.
M. Koubarakis. Complexity results for first-order theories of temporal constraints. KR (1994) 379–390.
H. Läuchli and C. Savioz. Monadic second order definable relations on the binary tree. J. Symbolic Logic
52 (1987) 219–226.
A. Muchnik. Definable criterion for definability in presburger arithmentic and its application (1991). Preprint in russian.
P. Péladeau. Logically defined subsets of
${\mathbb{N}}^k$
. Theoret. Comput. Sci.
93 (1992) 169–193.

J.-E. Pin. Varieties of formal languages. Plenum Publishing Co., New-York (1986). (Traduction de Variétés de langages formels.)
J. Sakarovitch. Eléments de théorie des automates. Vuibert Informatique (2003).
A. Schrijver. Theory of Linear and Integer Programming. John Wiley & sons (1998).
C. Smoryński. Logical Number Theory I: An Introduction. Springer Verlag (1991).