Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T16:34:50.098Z Has data issue: false hasContentIssue false

Closure under union and composition of iterated rational transductions

Published online by Cambridge University Press:  15 April 2002

D. Simplot
Affiliation:
URA 369 du CNRS, LIFL, Université de Lille I, bâtiment M3, Cité Scientifique, 59655 Villeneuve-d'Ascq Cedex, France; ([email protected])
A. Terlutte
Affiliation:
URA 369 du CNRS, LIFL, Université de Lille I, bâtiment M3, Cité Scientifique, 59655 Villeneuve-d'Ascq Cedex, France; ([email protected])
Get access

Abstract

We proceed our work on iterated transductions by studying the closure underunion and composition of some classes of iterated functions. Weanalyze this closure for the classes of length-preservingrational functions, length-preserving subsequential functions andlength-preserving sequential functions with terminal states. All the classes weobtain are equal. We also study the connection with deterministiccontext-sensitive languages.

Type
Research Article
Copyright
© EDP Sciences, 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, A. and Latteux, M., A new proof of two theorems about rational transductions. Theoret. Comput. Sci. 8 (1979) 261-263. CrossRef
J. Berstel, Transductions and Context-Free Languages. Teubner Studienbücher, Stuttgart (1979).
S. Eilenberg, Automata, Languages and Machines, Vol. A. Academic Press, New York (1974).
Elgot, C.C. and Mezei, J.E., On relations defined by generalized finite automata. IBM J. Res. Develop. 9 (1965) 47-68. CrossRef
Latteux, M., Simplot, D. and Terlutte, A., Iterated length-preserving rational transductions, in Proc. 23rd Symposium on Mathematical Foundations of Computer Science (MFCS'98) (Brno, Czech Republic, 1998), edited by L. Brim, J. Gruska and J. Zlatuska. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 1450 (1998) 286-295. CrossRef
Leguy, J., Transductions rationnelles décroissantes. Theoret. Informatics Appl. 15 (1981) 141-148.
Nivat, M., Transductions des langages de Chomsky. Ann. Inst. Fourier (Grenoble) 18 (1968) 339-456. CrossRef
Schützenberger, M.P., Sur les relations rationnelles entre monoïdes libres. Theoret. Comput. Sci. 3 (1976) 243-259. CrossRef
Simplot, D. and Terlutte, A., Iterations of Transductions. Theoret. Informatics Appl. 34 (2000) 99-130. CrossRef
Wood, D., Iterated a-NGSM maps and $\Gamma$ systems. Inform. and Control 32 (1976) 1-26. CrossRef