Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T14:09:08.795Z Has data issue: false hasContentIssue false

Some algorithms to compute the conjugates of Episturmian morphisms

Published online by Cambridge University Press:  15 November 2003

Gwenael Richomme*
Affiliation:
LaRIA, Université de Picardie Jules Verne, 5 rue du Moulin Neuf, 80000 Amiens, France; [email protected].
Get access

Abstract

Episturmian morphisms generalize Sturmian morphisms. They are defined as compositions of exchange morphisms and two particular morphisms L, and R. Epistandard morphisms are the morphisms obtained without considering R. In [14], a general study of these morphims and of conjugacy of morphisms is given. Here, given a decomposition of an Episturmian morphism f over exchange morphisms and {L,R}, we consider two problems: how to compute a decomposition of one conjugate of f; how to compute a list of decompositions of all the conjugates of f when f is epistandard. For each problem, we give several algorithms. Although the proposed methods are fundamently different, we show that some of these lead to the same result. We also give other algorithms, using the same input, to compute for instance the length of the morphism, or its number of conjugates.

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnoux, P. and Rauzy, G., Représentation géométrique de suites de complexités 2n+1. Bull. Soc. Math. France 119 (1991) 199-215. CrossRef
J. Berstel and P. Séébold, Sturmian words, Chap. 2, edited by M. Lothaire. Cambridge Mathematical Library, Algebraic Combinatorics on Words 90 (2002).
Berthé, V. and Vuillon, L., Tilings and rotations on the torus: A two dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53. CrossRef
Castelli, M.G., Mignosi, F. and Restivo, A., Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94. CrossRef
Droubay, X., Justin, J. and Pirillo, G., Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553. CrossRef
Hubert, P., Suites équilibrées. Theoret. Comput. Sci. 242 (2000) 91-108. CrossRef
Justin, J., On a paper by Castelli, Mignosi, Restivo. RAIRO: Theoret. Informatics Appl. 34 (2000) 373-377.
J. Justin, Episturmian words and morphisms (results and conjectures), edited by H. Crapo and D. Senato. Springer-Verlag, Algebraic Combinatorics and Comput. Sci. (2001) 533-539.
Justin, J. and Pirillo, G., Episturmian words and Episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313. CrossRef
Justin, J. and Vuillon, L., Return words in Sturmian and Episturmian words. RAIRO: Theoret. Informatics Appl. 34 (2000) 343-356.
F. Levé and P. Séébold, Conjugation of standard morphisms and a generalization of singular words, in Proc. of the 9 th international conference Journées Montoises d'Informatique Théorique. Montpellier, France (2002).
Morse, M. and Hedlund, G.A., Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math. 61 (1940) 1-42. CrossRef
G. Rauzy, Suites à termes dans un alphabet fini, in Séminaire de théorie des Nombres de Bordeaux. Exposé 25 (1983).
G. Richomme, Conjugacy and Episturmian morphisms, Technical Report 2001-03. LaRIA, Theoret. Comput. Sci. (to appear).
Séébold, P., Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384. CrossRef
Séébold, P., On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. CrossRef
Wen, Z.X. and Zhang, Y., Some remarks on invertible substitutions on three letter alphabet. Chin. Sci. Bulletin 44 (1999) 1755-1760. CrossRef