Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T09:18:14.623Z Has data issue: false hasContentIssue false

On the median-of-k versionof Hoare's selection algorithm

Published online by Cambridge University Press:  15 August 2002

Rudolf Grübel*
Affiliation:
Institut für Mathematische Stochastik, Universität Hannover, Postfach 60 09, 30060 Hannover, Germany; [email protected].
Get access

Abstract

In Hoare's (1961) original version of the algorithm  the partitioning element in the central divide-and-conquer step is chosen uniformly at random from the set S in question.Here we consider a variant where this element is the median of a sample of size 2k+1 from S. We investigate convergencein distribution of the number of comparisons required and obtain a simple explicit result for the limitingaverage performance of the median-of-three version.

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D.H. and Brown, R., Combinatorial aspects of C.A.R. Hoare's FIND algorithm. Australasian J. Combinatorics 5 (1992) 109-119.
Bickel, P. and Freedman, D.A., Some asymptotic theory for the bootstrap. Annals of Statistics 9 (1981) 1196-1217. CrossRef
Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L. and Tarjan, R.E., Time bounds for selection. J. Comput. System Sci. 7 (1973) 448-461. CrossRef
Devroye, L., Exponential bounds for the running time of a selection algorithm. J. Comput. System Sci. 29 (1984) 1-7. CrossRef
N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory. Wiley, New York (1958).
Floyd, R.W. and Rivest, R.L., Expected time bounds for selection. Comm. ACM 18 (1975) 165-172. CrossRef
Grübel, R. and Rösler, U., Asymptotic distribution theory for Hoare's selection algorithm. Adv. in Applied Probab. 28 (1996) 252-269. CrossRef
Grübel, R., Hoare's selection algorithm: A Markov chain approach. J. Appl. Probab. 35 (1998) 36-45. CrossRef
Hoare, C.A.R., Algorithm 63: PARTITION, Algorithm 64: QUICKSORT, Algorithm 65: FIND. Comm. ACM 4 (1961) 321-322. CrossRef
Hyafil, L., Bounds for selection. SIAM J. Comput. 5 (1976) 109-114. CrossRef
D.E. Knuth, The Art of Computer Programming 3, Sorting and Searching. Addison-Wesley, Reading (1973).
Kodaj, B. and Mori, T.F., On the number of comparisons in Hoare's algorithm ``Find''. Studia Sci. Math. Hungar. 33 (1997) 185-207.
J. Neveu, Mathematische Grundlagen der Wahrscheinlichkeitstheorie. Oldenbourg, München (1969).
Paulsen, V., The moments of FIND. J. Appl. Probab. 34 (1997) 1079-1082. CrossRef
G.J.E. Rawlins, Compared to What? An Introduction to the Analysis of Algorithms. Freedman, New York (1992).
R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading (1996).