Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:11:52.825Z Has data issue: false hasContentIssue false

Dejean's conjecture and letter frequency

Published online by Cambridge University Press:  03 June 2008

Jérémie Chalopin
Affiliation:
LIF, CNRS, Université de Provence, CMI, 39 rue Joliot-Curie, 13453 Marseille, France; [email protected]
Pascal Ochem
Affiliation:
LRI, CNRS, Université Paris-Sud 11, Bât 490, 91405 Orsay Cedex, France; [email protected]
Get access

Abstract

We prove two cases of a strong version of Dejean's conjecture involving extremal letter frequencies. The results are that there exist an infinite $\left({\frac{5}{4}^+}\right)$-free word over a 5 letter alphabet with letter frequency $\frac{1}{6}$ and an infinite $\left({\frac{6}{5}^+}\right)$-free word over a 6 letter alphabet with letter frequency $\frac{1}{5}$.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carpi, A., Dejeans, On conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137151. CrossRef
C. Choffrut and J. Karhumäki, Combinatorics of words, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer-Verlag (1997) 329–438.
M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin. 28(3) (2007) 876–890.
Dejean, F., Sur un théorème de Thue. J. Combin. Theor. Ser. A 13 (1972) 9099. CrossRef
A. Khalyavin. The minimal density of a letter in an infinite ternary square-free word is 883/3215. J. Integer Sequences 10 (2007) 07.6.5.
Kolpakov, R., Kucherov, G. and Tarannikov, Y., On repetition-free binary words of minimal density. Theoret. Comput. Sci. 218 (1999) 161175. CrossRef
Moulin-Ollagnier, J., Proof of Dejean's conjecture for alphabets with 5,6,7,8,9,10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187205. CrossRef
Ochem, P., Letter frequency in infinite repetition-free words. Theoret. Comput. Sci. 380 (2007) 388392. CrossRef
P. Ochem and T. Reix, Upper bound on the number of ternary square-free words, in Workshop on Words and Automata (WOWA'06). St. Petersburg, Russia, June 7 (2006).
Pansiot, J.-J., À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297311. CrossRef
C. Richard and U. Grimm, On the entropy and letter frequencies of ternary square-free words. Electron. J. Comb. 11 (2004) #R14.
Y. Tarannikov, The minimal density of a letter in an infinite ternary square-free word is 0.2746... J. Integer Sequences 5 (2002) 02.2.2.