Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T10:59:46.909Z Has data issue: false hasContentIssue false

Generalized Characterizationof the Convex Envelope of a Function

Published online by Cambridge University Press:  15 July 2002

Fethi Kadhi*
Affiliation:
Preparatory Institute of Engineering Studies, P.O. Box 805, 3018 Sfax, Tunisia.
Get access

Abstract

We investigate the minima of functionals of the form $$\int_{[a,b]}g(\dot u(s)){\rm d}s$$ where g is strictly convex. The admissible functions $u:[a,b]\longrightarrow\mathbb{R}$ are not necessarily convex and satisfy $u\leq f$ on [a,b], u(a)=f(a), u(b)=f(b), f is a fixed function on [a,b].We show that the minimum is attained by $\bar f$ , the convex envelope of f.

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Benoist and J.B. Hiriart-Urruty, What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal. 27 (1994) 1661-1679.
H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983).
B. Dacorogna, Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992).
Kadhi, F. and Trad, A., Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl. 110 (2001) 457-466. CrossRef
Lachand-Robert, T. and Peletier, M.A., Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 851-855. CrossRef
T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey (1970).
W. Rudin, Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987).