Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T18:16:48.112Z Has data issue: false hasContentIssue false

Unified global optimalityconditionsfor smooth minimization problems with mixed variables

Published online by Cambridge University Press:  20 August 2008

Vaithilingam Jeyakumar
Affiliation:
Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia; [email protected], [email protected]
Sivakolundu Srisatkunarajah
Affiliation:
Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia; [email protected], [email protected]
Nguyen Quang Huy
Affiliation:
Department of Applied Mathematics, University of New South Wales, Sydney 2052, Australia; [email protected], [email protected] Hanoi Pedagogical University No. 2, Vinh Phuc, Vietnam.
Get access

Abstract

In this paper we establish necessary as well assufficient conditions for a given feasible point to be a globalminimizer of smooth minimization problems with mixed variables.These problems, for instance, cover box constrained smooth minimizationproblems and bivalent optimization problems. In particular, ourresults provide necessary global optimality conditions for differenceconvex minimization problems, whereas our sufficient conditionsgive easily verifiable conditions for global optimality of variousclasses of nonconvex minimization problems, including the class ofdifference of convex and quadratic minimization problems. Wediscuss numerical examples to illustrate the optimalityconditions

Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, A. and Teboulle, M., Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optim. 11 (2000) 179188. CrossRef
E. Cela, The quadratic assignment problem: theory and algorithms. Kluwer Academic Publishers (1998).
P. De Angelis, P. Pardalos and G. Toraldo, Quadratic programming with box constraints, in Developments in global optimization, edited by Bomze I. et al. Kluwer Acad. Publ., Dordrecht (1997) 73–93.
C.A. Floudas and P.M. Pardalos, Optimization in computational chemistry and molecular biology: Local and global approaches. Kluwer Academic Publishers (2000).
N.Q. Huy, V. Jeyakumar and G.M. Lee, Sufficient global optimality conditions for multi-extremal smooth minimization problems with bounds and linear matrix inequality constraints, The ANZIAM J. 47 (2006) 439–450.
N.Q. Huy, V. Jeyakumar and G.M. Lee, Globally minimizing smooth functions with simple constraints: Necessary, and sufficient optimality conditions (submitted).
V. Jeyakumar and N.Q. Huy, Global minimization of difference of quadratic and convex functions over box or binary constraints, To appear in Optimization Letters, DOI: 10.1007/s11590-007-0053-6 (2008).
Jeyakumar, V., Rubinov, A.M. and Sufficient, Z.Y. Wu global optimality conditions for non-convex quadratic minimization problems with box constraints. J. Global Optim. 36 (2006) 461468.
Jeyakumar, V., Rubinov, A.M. and Nonconvex, Z.Y. Wu quadratic minimization with quadratic constraints: Global optimality conditions. Math. Program. 110 (2007) 521541. CrossRef
Junger, M., Martin, A., Reinelt, G. and Weismantel, R., 0/1 optimization and a decomposition approach for the placement of electronic circuits. Math. Program. 63 (1994) 257279. CrossRef
R.F. Marcia, J.C. Mitchell and J.B. Rosen, Iterative convex quadratic approximation for global optimization in protein docking, Comput. Optim. Appl. 32 (2005) 285–297. CrossRef
P.M. Pardalos and G.P. Rodgers, Computational aspects of quadratic zero-one programming, Computing 45 (1990) 131–144.
M.C. Pinar, Sufficient global optimality conditions for bivalent quadratic optimization, J. Optim. Theor. Appl. 122 (2004) 433–440. CrossRef
Pinar, M.C. and Teboulle, M., On semidefinite bounds for maximization of a non-convex quadratic objective over l 1 unit ball. RAIRO Oper. Res. 40 (2006) 253265. CrossRef
Wu, Z., Jeyakumar, V., Rubinov, A.M., Sufficient conditions for global optimality of bivalent nonconvex quadratic programs with inequality constraints. J. Optim. Theor. Appl. 133 (2007) 123130. CrossRef