No CrossRef data available.
Published online by Cambridge University Press: 15 November 2003
A recently introduced dualization technique for binary linear programs with equality constraints, essentially due to Poljak et al. [13], and further developed in Lemaréchal and Oustry [9], leads to simple alternative derivations of well-known, important relaxations to two well-known problems of discrete optimization: the maximum stable set problem and the maximum vertex cover problem. The resulting relaxation is easily transformed to the well-known Lovász θ number.